
FACE is a parallelogram. L and R are the mid points of EF and AC respectively. Prove that the line segment ER, AL trisect the diagonal FC.
Answer
582.9k+ views
Hint:
In order to show that the line segment \[ER, AL\] trisect \[FC\], first join the points \[E\& L \text{ and } L\& A\]. And join the diagonal \[FC\]. Then use the property of parallelogram in order to prove \[ELAR\] is a parallelogram.
Complete step by step solution:
In this question, first we will modify the given diagram as given below,
As given L and R are the midpoint of EF and AC.
So the length of EL and AR is half of the length of EF and AC. The length of EL and AR is given below.
\[
EL = \dfrac{1}{2}EF \\
AR = \dfrac{1}{2}AC \\
\]
As it is given that FACE is a parallelogram. So opposite sides are parallel and equal.
Therefore \[FA = CE {\text{ and }}EL\parallel CE\]. And \[FE = CE {\text{ and }} FE\parallel AC\].
As the length of the line segment EF and AC, so it means \[EF = AC\].
So the half of the EF and AC are also equal, it is shown below.
\[\dfrac{1}{2}EF = \dfrac{1}{2}AC\].
Using the above expression for half of the EF and AC we get the following expression as given below.
\[EL = AR\].
And \[EL\parallel AR\], means EL and AR are parallel.
Thus by using the property of the parallelogram, ELAR is also a parallelogram.
So \[ER\parallel LA {\text{and }}EQ\parallel LP\]
In the triangle \[APC\] we have \[R\] is the midpoint of \[AC\], and \[P\] is the midpoint of \[FQ\].
So, the length of the line segment \[FP \& PQ\] are equal; it means \[FP = PQ \left( 1 \right)\].
In the triangle \[PFE\] we have \[L\] is the midpoint of \[FE\].
Also, as \[Q\] is the midpoint of \[CP\].
So we get the length of the line segments \[CQ \& PQ\] are equal, it means \[CQ = PQ \left( 2 \right)\]
Using the above expression (1) and (2) we find that the length of the line segments\[FP,PQ\& QC\] are equal; it means \[FP = PQ = QC\].
Hence the above proof is showing that \[ER,AL\] trisect \[FC\].
Note:
We know that in a parallelogram the opposite sides are parallel and equal. In order to prove a quadrilateral is a parallelogram it is enough to prove that one pair of opposite sides are parallel and equal.
In order to show that the line segment \[ER, AL\] trisect \[FC\], first join the points \[E\& L \text{ and } L\& A\]. And join the diagonal \[FC\]. Then use the property of parallelogram in order to prove \[ELAR\] is a parallelogram.
Complete step by step solution:
In this question, first we will modify the given diagram as given below,
As given L and R are the midpoint of EF and AC.
So the length of EL and AR is half of the length of EF and AC. The length of EL and AR is given below.
\[
EL = \dfrac{1}{2}EF \\
AR = \dfrac{1}{2}AC \\
\]
As it is given that FACE is a parallelogram. So opposite sides are parallel and equal.
Therefore \[FA = CE {\text{ and }}EL\parallel CE\]. And \[FE = CE {\text{ and }} FE\parallel AC\].
As the length of the line segment EF and AC, so it means \[EF = AC\].
So the half of the EF and AC are also equal, it is shown below.
\[\dfrac{1}{2}EF = \dfrac{1}{2}AC\].
Using the above expression for half of the EF and AC we get the following expression as given below.
\[EL = AR\].
And \[EL\parallel AR\], means EL and AR are parallel.
Thus by using the property of the parallelogram, ELAR is also a parallelogram.
So \[ER\parallel LA {\text{and }}EQ\parallel LP\]
In the triangle \[APC\] we have \[R\] is the midpoint of \[AC\], and \[P\] is the midpoint of \[FQ\].
So, the length of the line segment \[FP \& PQ\] are equal; it means \[FP = PQ \left( 1 \right)\].
In the triangle \[PFE\] we have \[L\] is the midpoint of \[FE\].
Also, as \[Q\] is the midpoint of \[CP\].
So we get the length of the line segments \[CQ \& PQ\] are equal, it means \[CQ = PQ \left( 2 \right)\]
Using the above expression (1) and (2) we find that the length of the line segments\[FP,PQ\& QC\] are equal; it means \[FP = PQ = QC\].
Hence the above proof is showing that \[ER,AL\] trisect \[FC\].
Note:
We know that in a parallelogram the opposite sides are parallel and equal. In order to prove a quadrilateral is a parallelogram it is enough to prove that one pair of opposite sides are parallel and equal.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?


