Answer
Verified
445.8k+ views
Hint- In this question we will use two main concepts to find the mean of given terms.
1) First one is definition of mean i.e. mean is equal to sum of observations divided by number of observations.
2) And the second one is Arithmetic progression. It is a sequence of numbers such that the difference between the consecutive terms is constant.
Complete Step by step solution:
The mean of the given set ${x_1},{x_2},...{x_{10}}$ is$20$.
We know that the formula for mean $m = \dfrac{{{x_1} + {x_2} + {x_3}......... + {x_n}}}{n}$ where, ${x_1},{x_2},...{x_n}$ are the observations and $n$ is number of observations. By applying the formula,
\[\dfrac{{({x_1} + {x_2} + ... + {x_{10}})}}{{10}} = 20\] [As given that mean is $20$]
\[ \Rightarrow {x_1} + {x_2} + ... + {x_{10}} = 200\] equation (1)
We have to find the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...{x_{10}} + 40$, therefore,
$\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}}$
$ = \dfrac{{({x_1} + {x_2} + {x_3} + ... + {x_{10}}) + (4 + 8 + 12 + ... + 40)}}{{10}}$
\[ = \dfrac{{200 + (4 + 8 + 12 + ... + 40)}}{{10}}\] [from equation (1)] equation (2)
We can observe that $4 + 8 + 12 + ... + 40$ is an Arithmetic progression,
$8 - 4 = 4$
$12 - 8 = 4$
It means that the difference between two consecutive terms of the sequence is common i.e. $4$.
We know that, formula for sum of finite number of terms of an A.P. is
${S_n} = \dfrac{n}{2}\left\{ {2a + (n - 1)d} \right\}$
Where $a$ is first term, $d$ is common difference and $n$ is total number of term in the A.P.
For $4 + 8 + 12 + ... + 40$,
$a = 4$, $d = 4$ and $n = 10$
On substituting the values,
${S_{10}} = \dfrac{{10}}{2}\left\{ {2 \times 4 + \left( {10 - 1} \right)4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 9 \times 4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 36} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {44} \right\}$
$ \Rightarrow {S_{10}} = 220$
$\therefore 4 + 8 + 12 + ... + 40 = 220$
On substituting the value in equation (2),
\[\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{200 + 220}}{{10}}\]
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{420}}{{10}}$
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = 42$
Hence the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...,{x_{10}} + 40 = 42$
Answer- option (B)
Note: Formula for the mean for grouped data when class intervals are not given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ observation ${x_i}$.
Formula for the mean for grouped data when class intervals are given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ class whose class mark is ${x_i}$.
Class mark $ = $ (Upper class limit $ + $ Lower class limit)$/2$
1) First one is definition of mean i.e. mean is equal to sum of observations divided by number of observations.
2) And the second one is Arithmetic progression. It is a sequence of numbers such that the difference between the consecutive terms is constant.
Complete Step by step solution:
The mean of the given set ${x_1},{x_2},...{x_{10}}$ is$20$.
We know that the formula for mean $m = \dfrac{{{x_1} + {x_2} + {x_3}......... + {x_n}}}{n}$ where, ${x_1},{x_2},...{x_n}$ are the observations and $n$ is number of observations. By applying the formula,
\[\dfrac{{({x_1} + {x_2} + ... + {x_{10}})}}{{10}} = 20\] [As given that mean is $20$]
\[ \Rightarrow {x_1} + {x_2} + ... + {x_{10}} = 200\] equation (1)
We have to find the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...{x_{10}} + 40$, therefore,
$\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}}$
$ = \dfrac{{({x_1} + {x_2} + {x_3} + ... + {x_{10}}) + (4 + 8 + 12 + ... + 40)}}{{10}}$
\[ = \dfrac{{200 + (4 + 8 + 12 + ... + 40)}}{{10}}\] [from equation (1)] equation (2)
We can observe that $4 + 8 + 12 + ... + 40$ is an Arithmetic progression,
$8 - 4 = 4$
$12 - 8 = 4$
It means that the difference between two consecutive terms of the sequence is common i.e. $4$.
We know that, formula for sum of finite number of terms of an A.P. is
${S_n} = \dfrac{n}{2}\left\{ {2a + (n - 1)d} \right\}$
Where $a$ is first term, $d$ is common difference and $n$ is total number of term in the A.P.
For $4 + 8 + 12 + ... + 40$,
$a = 4$, $d = 4$ and $n = 10$
On substituting the values,
${S_{10}} = \dfrac{{10}}{2}\left\{ {2 \times 4 + \left( {10 - 1} \right)4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 9 \times 4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 36} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {44} \right\}$
$ \Rightarrow {S_{10}} = 220$
$\therefore 4 + 8 + 12 + ... + 40 = 220$
On substituting the value in equation (2),
\[\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{200 + 220}}{{10}}\]
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{420}}{{10}}$
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = 42$
Hence the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...,{x_{10}} + 40 = 42$
Answer- option (B)
Note: Formula for the mean for grouped data when class intervals are not given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ observation ${x_i}$.
Formula for the mean for grouped data when class intervals are given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ class whose class mark is ${x_i}$.
Class mark $ = $ (Upper class limit $ + $ Lower class limit)$/2$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE