
f the mean of a set of observation ${x_1},{x_2},...{x_{10}}$ is $20$ then the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...,{x_{10}} + 40$ is?
(A) $34$ (B) $42$ (C) $38$ (D) $40$
Answer
523.5k+ views
Hint- In this question we will use two main concepts to find the mean of given terms.
1) First one is definition of mean i.e. mean is equal to sum of observations divided by number of observations.
2) And the second one is Arithmetic progression. It is a sequence of numbers such that the difference between the consecutive terms is constant.
Complete Step by step solution:
The mean of the given set ${x_1},{x_2},...{x_{10}}$ is$20$.
We know that the formula for mean $m = \dfrac{{{x_1} + {x_2} + {x_3}......... + {x_n}}}{n}$ where, ${x_1},{x_2},...{x_n}$ are the observations and $n$ is number of observations. By applying the formula,
\[\dfrac{{({x_1} + {x_2} + ... + {x_{10}})}}{{10}} = 20\] [As given that mean is $20$]
\[ \Rightarrow {x_1} + {x_2} + ... + {x_{10}} = 200\] equation (1)
We have to find the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...{x_{10}} + 40$, therefore,
$\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}}$
$ = \dfrac{{({x_1} + {x_2} + {x_3} + ... + {x_{10}}) + (4 + 8 + 12 + ... + 40)}}{{10}}$
\[ = \dfrac{{200 + (4 + 8 + 12 + ... + 40)}}{{10}}\] [from equation (1)] equation (2)
We can observe that $4 + 8 + 12 + ... + 40$ is an Arithmetic progression,
$8 - 4 = 4$
$12 - 8 = 4$
It means that the difference between two consecutive terms of the sequence is common i.e. $4$.
We know that, formula for sum of finite number of terms of an A.P. is
${S_n} = \dfrac{n}{2}\left\{ {2a + (n - 1)d} \right\}$
Where $a$ is first term, $d$ is common difference and $n$ is total number of term in the A.P.
For $4 + 8 + 12 + ... + 40$,
$a = 4$, $d = 4$ and $n = 10$
On substituting the values,
${S_{10}} = \dfrac{{10}}{2}\left\{ {2 \times 4 + \left( {10 - 1} \right)4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 9 \times 4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 36} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {44} \right\}$
$ \Rightarrow {S_{10}} = 220$
$\therefore 4 + 8 + 12 + ... + 40 = 220$
On substituting the value in equation (2),
\[\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{200 + 220}}{{10}}\]
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{420}}{{10}}$
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = 42$
Hence the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...,{x_{10}} + 40 = 42$
Answer- option (B)
Note: Formula for the mean for grouped data when class intervals are not given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ observation ${x_i}$.
Formula for the mean for grouped data when class intervals are given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ class whose class mark is ${x_i}$.
Class mark $ = $ (Upper class limit $ + $ Lower class limit)$/2$
1) First one is definition of mean i.e. mean is equal to sum of observations divided by number of observations.
2) And the second one is Arithmetic progression. It is a sequence of numbers such that the difference between the consecutive terms is constant.
Complete Step by step solution:
The mean of the given set ${x_1},{x_2},...{x_{10}}$ is$20$.
We know that the formula for mean $m = \dfrac{{{x_1} + {x_2} + {x_3}......... + {x_n}}}{n}$ where, ${x_1},{x_2},...{x_n}$ are the observations and $n$ is number of observations. By applying the formula,
\[\dfrac{{({x_1} + {x_2} + ... + {x_{10}})}}{{10}} = 20\] [As given that mean is $20$]
\[ \Rightarrow {x_1} + {x_2} + ... + {x_{10}} = 200\] equation (1)
We have to find the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...{x_{10}} + 40$, therefore,
$\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}}$
$ = \dfrac{{({x_1} + {x_2} + {x_3} + ... + {x_{10}}) + (4 + 8 + 12 + ... + 40)}}{{10}}$
\[ = \dfrac{{200 + (4 + 8 + 12 + ... + 40)}}{{10}}\] [from equation (1)] equation (2)
We can observe that $4 + 8 + 12 + ... + 40$ is an Arithmetic progression,
$8 - 4 = 4$
$12 - 8 = 4$
It means that the difference between two consecutive terms of the sequence is common i.e. $4$.
We know that, formula for sum of finite number of terms of an A.P. is
${S_n} = \dfrac{n}{2}\left\{ {2a + (n - 1)d} \right\}$
Where $a$ is first term, $d$ is common difference and $n$ is total number of term in the A.P.
For $4 + 8 + 12 + ... + 40$,
$a = 4$, $d = 4$ and $n = 10$
On substituting the values,
${S_{10}} = \dfrac{{10}}{2}\left\{ {2 \times 4 + \left( {10 - 1} \right)4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 9 \times 4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 36} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {44} \right\}$
$ \Rightarrow {S_{10}} = 220$
$\therefore 4 + 8 + 12 + ... + 40 = 220$
On substituting the value in equation (2),
\[\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{200 + 220}}{{10}}\]
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{420}}{{10}}$
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = 42$
Hence the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...,{x_{10}} + 40 = 42$
Answer- option (B)
Note: Formula for the mean for grouped data when class intervals are not given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ observation ${x_i}$.
Formula for the mean for grouped data when class intervals are given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ class whose class mark is ${x_i}$.
Class mark $ = $ (Upper class limit $ + $ Lower class limit)$/2$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
The aviation fuel used in the engines of jet airplanes class 10 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Why is it 530 pm in india when it is 1200 afternoon class 10 social science CBSE

What is the full form of POSCO class 10 social science CBSE

Draw a labelled diagram of the human digestive system class 10 biology CBSE

What is potential and actual resources
