
f the mean of a set of observation ${x_1},{x_2},...{x_{10}}$ is $20$ then the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...,{x_{10}} + 40$ is?
(A) $34$ (B) $42$ (C) $38$ (D) $40$
Answer
592.2k+ views
Hint- In this question we will use two main concepts to find the mean of given terms.
1) First one is definition of mean i.e. mean is equal to sum of observations divided by number of observations.
2) And the second one is Arithmetic progression. It is a sequence of numbers such that the difference between the consecutive terms is constant.
Complete Step by step solution:
The mean of the given set ${x_1},{x_2},...{x_{10}}$ is$20$.
We know that the formula for mean $m = \dfrac{{{x_1} + {x_2} + {x_3}......... + {x_n}}}{n}$ where, ${x_1},{x_2},...{x_n}$ are the observations and $n$ is number of observations. By applying the formula,
\[\dfrac{{({x_1} + {x_2} + ... + {x_{10}})}}{{10}} = 20\] [As given that mean is $20$]
\[ \Rightarrow {x_1} + {x_2} + ... + {x_{10}} = 200\] equation (1)
We have to find the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...{x_{10}} + 40$, therefore,
$\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}}$
$ = \dfrac{{({x_1} + {x_2} + {x_3} + ... + {x_{10}}) + (4 + 8 + 12 + ... + 40)}}{{10}}$
\[ = \dfrac{{200 + (4 + 8 + 12 + ... + 40)}}{{10}}\] [from equation (1)] equation (2)
We can observe that $4 + 8 + 12 + ... + 40$ is an Arithmetic progression,
$8 - 4 = 4$
$12 - 8 = 4$
It means that the difference between two consecutive terms of the sequence is common i.e. $4$.
We know that, formula for sum of finite number of terms of an A.P. is
${S_n} = \dfrac{n}{2}\left\{ {2a + (n - 1)d} \right\}$
Where $a$ is first term, $d$ is common difference and $n$ is total number of term in the A.P.
For $4 + 8 + 12 + ... + 40$,
$a = 4$, $d = 4$ and $n = 10$
On substituting the values,
${S_{10}} = \dfrac{{10}}{2}\left\{ {2 \times 4 + \left( {10 - 1} \right)4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 9 \times 4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 36} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {44} \right\}$
$ \Rightarrow {S_{10}} = 220$
$\therefore 4 + 8 + 12 + ... + 40 = 220$
On substituting the value in equation (2),
\[\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{200 + 220}}{{10}}\]
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{420}}{{10}}$
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = 42$
Hence the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...,{x_{10}} + 40 = 42$
Answer- option (B)
Note: Formula for the mean for grouped data when class intervals are not given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ observation ${x_i}$.
Formula for the mean for grouped data when class intervals are given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ class whose class mark is ${x_i}$.
Class mark $ = $ (Upper class limit $ + $ Lower class limit)$/2$
1) First one is definition of mean i.e. mean is equal to sum of observations divided by number of observations.
2) And the second one is Arithmetic progression. It is a sequence of numbers such that the difference between the consecutive terms is constant.
Complete Step by step solution:
The mean of the given set ${x_1},{x_2},...{x_{10}}$ is$20$.
We know that the formula for mean $m = \dfrac{{{x_1} + {x_2} + {x_3}......... + {x_n}}}{n}$ where, ${x_1},{x_2},...{x_n}$ are the observations and $n$ is number of observations. By applying the formula,
\[\dfrac{{({x_1} + {x_2} + ... + {x_{10}})}}{{10}} = 20\] [As given that mean is $20$]
\[ \Rightarrow {x_1} + {x_2} + ... + {x_{10}} = 200\] equation (1)
We have to find the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...{x_{10}} + 40$, therefore,
$\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}}$
$ = \dfrac{{({x_1} + {x_2} + {x_3} + ... + {x_{10}}) + (4 + 8 + 12 + ... + 40)}}{{10}}$
\[ = \dfrac{{200 + (4 + 8 + 12 + ... + 40)}}{{10}}\] [from equation (1)] equation (2)
We can observe that $4 + 8 + 12 + ... + 40$ is an Arithmetic progression,
$8 - 4 = 4$
$12 - 8 = 4$
It means that the difference between two consecutive terms of the sequence is common i.e. $4$.
We know that, formula for sum of finite number of terms of an A.P. is
${S_n} = \dfrac{n}{2}\left\{ {2a + (n - 1)d} \right\}$
Where $a$ is first term, $d$ is common difference and $n$ is total number of term in the A.P.
For $4 + 8 + 12 + ... + 40$,
$a = 4$, $d = 4$ and $n = 10$
On substituting the values,
${S_{10}} = \dfrac{{10}}{2}\left\{ {2 \times 4 + \left( {10 - 1} \right)4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 9 \times 4} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {8 + 36} \right\}$
$ \Rightarrow {S_{10}} = 5\left\{ {44} \right\}$
$ \Rightarrow {S_{10}} = 220$
$\therefore 4 + 8 + 12 + ... + 40 = 220$
On substituting the value in equation (2),
\[\dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{200 + 220}}{{10}}\]
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = \dfrac{{420}}{{10}}$
$ \Rightarrow \dfrac{{({x_1} + 4 + {x_2} + 8 + {x_3} + 12 + ... + {x_{10}} + 40)}}{{10}} = 42$
Hence the mean of ${x_1} + 4,{x_2} + 8,{x_3} + 12,...,{x_{10}} + 40 = 42$
Answer- option (B)
Note: Formula for the mean for grouped data when class intervals are not given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ observation ${x_i}$.
Formula for the mean for grouped data when class intervals are given
Mean = $\overline x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}{f_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}$ where ${f_i}$ is the frequency of ${i_{th}}$ class whose class mark is ${x_i}$.
Class mark $ = $ (Upper class limit $ + $ Lower class limit)$/2$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

