
Express the trigonometric ratios $\sin A,\sec A$ and $\tan A$ in terms of $\cot A$.
Answer
607.8k+ views
Hint: Here, we will use some basic formulas of trigonometry which are $\sin A = \dfrac{1}{{{\text{cosec}}A}}$,$\tan A = \dfrac{1}{{\cot A}}$ and some trigonometric identities which are ${\left( {{\text{cosec}}A} \right)^2} = 1 + {\left( {\cot A} \right)^2}$, ${\left( {\sec A} \right)^2} = 1 + {\left( {\tan A} \right)^2}$.
Complete step-by-step answer:
As we know that the sine trigonometric function is the reciprocal of cosine trigonometric function.
i.e., $\sin A = \dfrac{1}{{{\text{cosec}}A}}{\text{ }} \to {\text{(1)}}$
Using the formula ${\left( {{\text{cosec}}A} \right)^2} = 1 + {\left( {\cot A} \right)^2}$, we can
$ \Rightarrow {\text{cosec}}A = \sqrt {1 + {{\left( {\cot A} \right)}^2}} $
Using the above equation, equation (1) becomes
$ \Rightarrow \sin A = \dfrac{1}{{\sqrt {1 + {{\left( {\cot A} \right)}^2}} }}$
This above equation represents the sine trigonometric function in terms of cotangent trigonometric function.
Since, tangent trigonometric function is the reciprocal of cotangent trigonometric function.
Also we know that ${\left( {\sec A} \right)^2} = 1 + {\left( {\tan A} \right)^2}{\text{ }} \to {\text{(2)}}$ and $\tan A = \dfrac{1}{{\cot A}}{\text{ }} \to {\text{(3)}}$
Substituting the value of tangent trigonometric function from equation (3) in equation (2), we get
\[
{\left( {\sec A} \right)^2} = 1 + {\left( {\dfrac{1}{{\cot A}}{\text{ }}} \right)^2} = 1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}} \\
\Rightarrow \sec A = \sqrt {1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}}} \\
\]
This above equation represents the secant trigonometric function in terms of cotangent trigonometric function.
According to equation (3), we can write
$\tan A = \dfrac{1}{{\cot A}}$
This above equation represents the tangent trigonometric function in terms of cotangent trigonometric function.
Hence, $\sin A = \dfrac{1}{{\sqrt {1 + {{\left( {\cot A} \right)}^2}} }}$, \[\sec A = \sqrt {1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}}} \] and $\tan A = \dfrac{1}{{\cot A}}$
Note: In this particular problem, in order to represent $\sin A$ in terms of $\cot A$ we will firstly convert $\sin A$ in terms of ${\text{cosec}}A$ and then finally we will convert ${\text{cosec}}A$ in terms of $\cot A$. Also, in order to convert $\sec A$ in terms of $\cot A$ we will firstly convert $\sec A$ in terms of $\tan A$ and then finally we will convert $\tan A$ in terms of $\cot A$. Also, for representing $\tan A$ in terms of $\cot A$ we will simply use the formula $\tan A = \dfrac{1}{{\cot A}}$.
Complete step-by-step answer:
As we know that the sine trigonometric function is the reciprocal of cosine trigonometric function.
i.e., $\sin A = \dfrac{1}{{{\text{cosec}}A}}{\text{ }} \to {\text{(1)}}$
Using the formula ${\left( {{\text{cosec}}A} \right)^2} = 1 + {\left( {\cot A} \right)^2}$, we can
$ \Rightarrow {\text{cosec}}A = \sqrt {1 + {{\left( {\cot A} \right)}^2}} $
Using the above equation, equation (1) becomes
$ \Rightarrow \sin A = \dfrac{1}{{\sqrt {1 + {{\left( {\cot A} \right)}^2}} }}$
This above equation represents the sine trigonometric function in terms of cotangent trigonometric function.
Since, tangent trigonometric function is the reciprocal of cotangent trigonometric function.
Also we know that ${\left( {\sec A} \right)^2} = 1 + {\left( {\tan A} \right)^2}{\text{ }} \to {\text{(2)}}$ and $\tan A = \dfrac{1}{{\cot A}}{\text{ }} \to {\text{(3)}}$
Substituting the value of tangent trigonometric function from equation (3) in equation (2), we get
\[
{\left( {\sec A} \right)^2} = 1 + {\left( {\dfrac{1}{{\cot A}}{\text{ }}} \right)^2} = 1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}} \\
\Rightarrow \sec A = \sqrt {1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}}} \\
\]
This above equation represents the secant trigonometric function in terms of cotangent trigonometric function.
According to equation (3), we can write
$\tan A = \dfrac{1}{{\cot A}}$
This above equation represents the tangent trigonometric function in terms of cotangent trigonometric function.
Hence, $\sin A = \dfrac{1}{{\sqrt {1 + {{\left( {\cot A} \right)}^2}} }}$, \[\sec A = \sqrt {1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}}} \] and $\tan A = \dfrac{1}{{\cot A}}$
Note: In this particular problem, in order to represent $\sin A$ in terms of $\cot A$ we will firstly convert $\sin A$ in terms of ${\text{cosec}}A$ and then finally we will convert ${\text{cosec}}A$ in terms of $\cot A$. Also, in order to convert $\sec A$ in terms of $\cot A$ we will firstly convert $\sec A$ in terms of $\tan A$ and then finally we will convert $\tan A$ in terms of $\cot A$. Also, for representing $\tan A$ in terms of $\cot A$ we will simply use the formula $\tan A = \dfrac{1}{{\cot A}}$.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

State and prove the Pythagoras theorem-class-10-maths-CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

Distinguish between the reserved forests and protected class 10 biology CBSE

