
Express the trigonometric ratios $\sin A,\sec A$ and $\tan A$ in terms of $\cot A$.
Answer
593.1k+ views
Hint: Here, we will use some basic formulas of trigonometry which are $\sin A = \dfrac{1}{{{\text{cosec}}A}}$,$\tan A = \dfrac{1}{{\cot A}}$ and some trigonometric identities which are ${\left( {{\text{cosec}}A} \right)^2} = 1 + {\left( {\cot A} \right)^2}$, ${\left( {\sec A} \right)^2} = 1 + {\left( {\tan A} \right)^2}$.
Complete step-by-step answer:
As we know that the sine trigonometric function is the reciprocal of cosine trigonometric function.
i.e., $\sin A = \dfrac{1}{{{\text{cosec}}A}}{\text{ }} \to {\text{(1)}}$
Using the formula ${\left( {{\text{cosec}}A} \right)^2} = 1 + {\left( {\cot A} \right)^2}$, we can
$ \Rightarrow {\text{cosec}}A = \sqrt {1 + {{\left( {\cot A} \right)}^2}} $
Using the above equation, equation (1) becomes
$ \Rightarrow \sin A = \dfrac{1}{{\sqrt {1 + {{\left( {\cot A} \right)}^2}} }}$
This above equation represents the sine trigonometric function in terms of cotangent trigonometric function.
Since, tangent trigonometric function is the reciprocal of cotangent trigonometric function.
Also we know that ${\left( {\sec A} \right)^2} = 1 + {\left( {\tan A} \right)^2}{\text{ }} \to {\text{(2)}}$ and $\tan A = \dfrac{1}{{\cot A}}{\text{ }} \to {\text{(3)}}$
Substituting the value of tangent trigonometric function from equation (3) in equation (2), we get
\[
{\left( {\sec A} \right)^2} = 1 + {\left( {\dfrac{1}{{\cot A}}{\text{ }}} \right)^2} = 1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}} \\
\Rightarrow \sec A = \sqrt {1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}}} \\
\]
This above equation represents the secant trigonometric function in terms of cotangent trigonometric function.
According to equation (3), we can write
$\tan A = \dfrac{1}{{\cot A}}$
This above equation represents the tangent trigonometric function in terms of cotangent trigonometric function.
Hence, $\sin A = \dfrac{1}{{\sqrt {1 + {{\left( {\cot A} \right)}^2}} }}$, \[\sec A = \sqrt {1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}}} \] and $\tan A = \dfrac{1}{{\cot A}}$
Note: In this particular problem, in order to represent $\sin A$ in terms of $\cot A$ we will firstly convert $\sin A$ in terms of ${\text{cosec}}A$ and then finally we will convert ${\text{cosec}}A$ in terms of $\cot A$. Also, in order to convert $\sec A$ in terms of $\cot A$ we will firstly convert $\sec A$ in terms of $\tan A$ and then finally we will convert $\tan A$ in terms of $\cot A$. Also, for representing $\tan A$ in terms of $\cot A$ we will simply use the formula $\tan A = \dfrac{1}{{\cot A}}$.
Complete step-by-step answer:
As we know that the sine trigonometric function is the reciprocal of cosine trigonometric function.
i.e., $\sin A = \dfrac{1}{{{\text{cosec}}A}}{\text{ }} \to {\text{(1)}}$
Using the formula ${\left( {{\text{cosec}}A} \right)^2} = 1 + {\left( {\cot A} \right)^2}$, we can
$ \Rightarrow {\text{cosec}}A = \sqrt {1 + {{\left( {\cot A} \right)}^2}} $
Using the above equation, equation (1) becomes
$ \Rightarrow \sin A = \dfrac{1}{{\sqrt {1 + {{\left( {\cot A} \right)}^2}} }}$
This above equation represents the sine trigonometric function in terms of cotangent trigonometric function.
Since, tangent trigonometric function is the reciprocal of cotangent trigonometric function.
Also we know that ${\left( {\sec A} \right)^2} = 1 + {\left( {\tan A} \right)^2}{\text{ }} \to {\text{(2)}}$ and $\tan A = \dfrac{1}{{\cot A}}{\text{ }} \to {\text{(3)}}$
Substituting the value of tangent trigonometric function from equation (3) in equation (2), we get
\[
{\left( {\sec A} \right)^2} = 1 + {\left( {\dfrac{1}{{\cot A}}{\text{ }}} \right)^2} = 1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}} \\
\Rightarrow \sec A = \sqrt {1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}}} \\
\]
This above equation represents the secant trigonometric function in terms of cotangent trigonometric function.
According to equation (3), we can write
$\tan A = \dfrac{1}{{\cot A}}$
This above equation represents the tangent trigonometric function in terms of cotangent trigonometric function.
Hence, $\sin A = \dfrac{1}{{\sqrt {1 + {{\left( {\cot A} \right)}^2}} }}$, \[\sec A = \sqrt {1 + \dfrac{1}{{{{\left( {\cot A} \right)}^2}}}} \] and $\tan A = \dfrac{1}{{\cot A}}$
Note: In this particular problem, in order to represent $\sin A$ in terms of $\cot A$ we will firstly convert $\sin A$ in terms of ${\text{cosec}}A$ and then finally we will convert ${\text{cosec}}A$ in terms of $\cot A$. Also, in order to convert $\sec A$ in terms of $\cot A$ we will firstly convert $\sec A$ in terms of $\tan A$ and then finally we will convert $\tan A$ in terms of $\cot A$. Also, for representing $\tan A$ in terms of $\cot A$ we will simply use the formula $\tan A = \dfrac{1}{{\cot A}}$.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

Which scientist proved that even plants have feelings class 10 physics CBSE

