
Express \[{\text{sin}}{67^0}{\text{ }} + {\text{ cos}}{75^0}\] in terms of trigonometric ratios of angles
between \[{0^0}\] and \[{45^0}\].
Answer
598.5k+ views
Hint:- Use \[{\text{6}}{{\text{7}}^0} = {90^0} - {23^0}\]and \[{75^0} = {90^0} - {15^0}\].
We are given with the equation,
\[ \Rightarrow {\text{sin}}{67^0}{\text{ }} + {\text{ cos}}{75^0}\] ---->(1)
And, had to convert the angles of the given equation between \[{0^0}\] and \[{45^0}\].
We know that,
According to the trigonometric identities,
\[ \Rightarrow {\text{sin}}\left( {{{90}^0} - \theta } \right) = \cos \theta \] ---->(2)
\[ \Rightarrow \]And, \[{\text{cos}}\left( {{{90}^0} - \theta } \right) = \sin \theta \] ----->(3)
So, above equation 1 can be written as,
\[ \Rightarrow \sin {\left( {90 - 23} \right)^0} + \cos {\left( {90 - 15} \right)^0}\] ---->(4)
So, using equation 2 and 3. We can write equation 4 as,
\[ \Rightarrow {\text{cos}}{23^0} + {\text{sin1}}{5^0}\]
Hence, the given equation is expressed in trigonometric ratios
of angles lying between \[{0^0}\] and \[{45^0}\].
\[ \Rightarrow \]So, \[{\text{sin}}{67^0}{\text{ }} + {\text{ cos}}{75^0} = {\text{cos}}{23^0} + {\text{sin1}}{5^0}\]
Note:- Whenever we came up with this type of problem then remember that,
\[{\text{sin}}\left( {{{90}^0} - \theta } \right) = \cos \theta \] and \[{\text{cos}}\left( {{{90}^0} - \theta } \right) = \sin \theta \]. And value of\[{\text{ sin}}\theta ,{\text{ cos}}\theta ,{\text{ tan}}\theta ,\]
\[{\text{cot}}\theta ,{\text{ cosec}}\theta \] and \[{\text{sec}}\theta \] is always positive if \[\theta \in \left[ {0,{{90}^0}} \right].\]
We are given with the equation,
\[ \Rightarrow {\text{sin}}{67^0}{\text{ }} + {\text{ cos}}{75^0}\] ---->(1)
And, had to convert the angles of the given equation between \[{0^0}\] and \[{45^0}\].
We know that,
According to the trigonometric identities,
\[ \Rightarrow {\text{sin}}\left( {{{90}^0} - \theta } \right) = \cos \theta \] ---->(2)
\[ \Rightarrow \]And, \[{\text{cos}}\left( {{{90}^0} - \theta } \right) = \sin \theta \] ----->(3)
So, above equation 1 can be written as,
\[ \Rightarrow \sin {\left( {90 - 23} \right)^0} + \cos {\left( {90 - 15} \right)^0}\] ---->(4)
So, using equation 2 and 3. We can write equation 4 as,
\[ \Rightarrow {\text{cos}}{23^0} + {\text{sin1}}{5^0}\]
Hence, the given equation is expressed in trigonometric ratios
of angles lying between \[{0^0}\] and \[{45^0}\].
\[ \Rightarrow \]So, \[{\text{sin}}{67^0}{\text{ }} + {\text{ cos}}{75^0} = {\text{cos}}{23^0} + {\text{sin1}}{5^0}\]
Note:- Whenever we came up with this type of problem then remember that,
\[{\text{sin}}\left( {{{90}^0} - \theta } \right) = \cos \theta \] and \[{\text{cos}}\left( {{{90}^0} - \theta } \right) = \sin \theta \]. And value of\[{\text{ sin}}\theta ,{\text{ cos}}\theta ,{\text{ tan}}\theta ,\]
\[{\text{cot}}\theta ,{\text{ cosec}}\theta \] and \[{\text{sec}}\theta \] is always positive if \[\theta \in \left[ {0,{{90}^0}} \right].\]
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

