
Expand log \[\sqrt[{12}]{{{a^3}{b^2}{c^4}}}\]as log a, log b, log c.
Answer
552k+ views
Hint: We have given that log \[\sqrt[{12}]{{{a^3}{b^2}{c^4}}}\]we expand it is the form of log a, log b, log c. So firstly have to write the 12th root of \[{a^3}{b^4}{c^2}\]in\[{\left( {{a^3}{b^2}{c^4}} \right)^{1{/_{12}}}}\]. Then we apply the property of logarithm. This properly helps to expand the log again we apply the property of logarithm on the product of function. This will separate log\[{a^3}\], log\[{b^2}\]and log\[{c^4}\]. Again applying the proper log \[{m^n}\]we will get the required result.
Complete step-by-step solution:
Let consider the given log function
\[ \Rightarrow \,\,\,I = \log \sqrt[{12}]{{{a^3}{b^2}{c^4}}}\]------------(1)
Here we have to expand it in log a, log b, log c.
Rewrite the equation (1) in exponent form, then
\[ \Rightarrow \,\,\,I = \log {\left( {{a^3}{b^2}{c^4}} \right)^{\dfrac{1}{{12}}}}\]----------(2)
Now we apply the properties of logarithm function. We know that \[\log {m^n} = {\text{ }}n\log m\].
Then equation (2) becomes
\[ \Rightarrow \,\,\,I = \dfrac{1}{{12}}\log \left( {{a^3}{b^2}{c^4}} \right)\]-------(3)
Also we know that product property of logarithm function i.e., \[\log \left( {mn} \right) = \log m + \log n\]
Then equation (3) becomes
\[ \Rightarrow \,\,\,\,\,I = \dfrac{1}{{12}}\left[ {\log {a^3} + {\text{ log}}{b^2} + {\text{ log}}{c^4}} \right]\]
Multiply \[\dfrac{1}{{12}}\] to each term inside the parenthesis, then
\[ \Rightarrow \,\,\,\,\,I = \dfrac{1}{{12}}\log {a^3} + \dfrac{1}{{12}}{\text{log}}{b^2} + \dfrac{1}{{12}}{\text{log}}{c^4}\]----------(4)
Now again by the properties of logarithm \[\log {m^n} = {\text{ }}n\log m\]
Then equation (4) becomes
\[ \Rightarrow \,\,\,\,I = \dfrac{1}{{12}} \times 3\log a{\text{ + }}\dfrac{1}{{12}} \times 2\log b + \dfrac{1}{{12}} \times 4\log c\]
On simplification, we get
\[ \Rightarrow \,\,\,\,I = \dfrac{1}{4}\log a{\text{ + }}\dfrac{1}{6}\log b + \dfrac{1}{3}\log c\]
Hence, the expand form of the function \[\log \sqrt[{12}]{{{a^3}{b^2}{c^4}}}\] is \[\,\,I = \dfrac{1}{4}\log a{\text{ + }}\dfrac{1}{6}\log b + \dfrac{1}{3}\log c\].
Note: In mathematics logarithm is the inverse function to exponentiation that means the logarithm of a given number x is the exponent to which another fixed number. The base b must raise, to produce that number x. In the simplest case the logarithm counts the number assurances of the same factor in repeated multiplication. EX: \[10 \times 10 \times 10 = {10^3}\]the logarithm base \[10\] of \[1000\] is 3 or \[{\log _{10}}\] \[\left( {1000} \right)\]= 3. The logarithm of x base b is as \[{\log _b}\] (x) or without parentheses \[{\log _b}\]x…or without explicit base log x. Most generally, exponentiation allows any positive real number b and x where b is not equal to 1 is always unique real number y.
Complete step-by-step solution:
Let consider the given log function
\[ \Rightarrow \,\,\,I = \log \sqrt[{12}]{{{a^3}{b^2}{c^4}}}\]------------(1)
Here we have to expand it in log a, log b, log c.
Rewrite the equation (1) in exponent form, then
\[ \Rightarrow \,\,\,I = \log {\left( {{a^3}{b^2}{c^4}} \right)^{\dfrac{1}{{12}}}}\]----------(2)
Now we apply the properties of logarithm function. We know that \[\log {m^n} = {\text{ }}n\log m\].
Then equation (2) becomes
\[ \Rightarrow \,\,\,I = \dfrac{1}{{12}}\log \left( {{a^3}{b^2}{c^4}} \right)\]-------(3)
Also we know that product property of logarithm function i.e., \[\log \left( {mn} \right) = \log m + \log n\]
Then equation (3) becomes
\[ \Rightarrow \,\,\,\,\,I = \dfrac{1}{{12}}\left[ {\log {a^3} + {\text{ log}}{b^2} + {\text{ log}}{c^4}} \right]\]
Multiply \[\dfrac{1}{{12}}\] to each term inside the parenthesis, then
\[ \Rightarrow \,\,\,\,\,I = \dfrac{1}{{12}}\log {a^3} + \dfrac{1}{{12}}{\text{log}}{b^2} + \dfrac{1}{{12}}{\text{log}}{c^4}\]----------(4)
Now again by the properties of logarithm \[\log {m^n} = {\text{ }}n\log m\]
Then equation (4) becomes
\[ \Rightarrow \,\,\,\,I = \dfrac{1}{{12}} \times 3\log a{\text{ + }}\dfrac{1}{{12}} \times 2\log b + \dfrac{1}{{12}} \times 4\log c\]
On simplification, we get
\[ \Rightarrow \,\,\,\,I = \dfrac{1}{4}\log a{\text{ + }}\dfrac{1}{6}\log b + \dfrac{1}{3}\log c\]
Hence, the expand form of the function \[\log \sqrt[{12}]{{{a^3}{b^2}{c^4}}}\] is \[\,\,I = \dfrac{1}{4}\log a{\text{ + }}\dfrac{1}{6}\log b + \dfrac{1}{3}\log c\].
Note: In mathematics logarithm is the inverse function to exponentiation that means the logarithm of a given number x is the exponent to which another fixed number. The base b must raise, to produce that number x. In the simplest case the logarithm counts the number assurances of the same factor in repeated multiplication. EX: \[10 \times 10 \times 10 = {10^3}\]the logarithm base \[10\] of \[1000\] is 3 or \[{\log _{10}}\] \[\left( {1000} \right)\]= 3. The logarithm of x base b is as \[{\log _b}\] (x) or without parentheses \[{\log _b}\]x…or without explicit base log x. Most generally, exponentiation allows any positive real number b and x where b is not equal to 1 is always unique real number y.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

