
Expand log \[\sqrt[{12}]{{{a^3}{b^2}{c^4}}}\]as log a, log b, log c.
Answer
524.7k+ views
Hint: We have given that log \[\sqrt[{12}]{{{a^3}{b^2}{c^4}}}\]we expand it is the form of log a, log b, log c. So firstly have to write the 12th root of \[{a^3}{b^4}{c^2}\]in\[{\left( {{a^3}{b^2}{c^4}} \right)^{1{/_{12}}}}\]. Then we apply the property of logarithm. This properly helps to expand the log again we apply the property of logarithm on the product of function. This will separate log\[{a^3}\], log\[{b^2}\]and log\[{c^4}\]. Again applying the proper log \[{m^n}\]we will get the required result.
Complete step-by-step solution:
Let consider the given log function
\[ \Rightarrow \,\,\,I = \log \sqrt[{12}]{{{a^3}{b^2}{c^4}}}\]------------(1)
Here we have to expand it in log a, log b, log c.
Rewrite the equation (1) in exponent form, then
\[ \Rightarrow \,\,\,I = \log {\left( {{a^3}{b^2}{c^4}} \right)^{\dfrac{1}{{12}}}}\]----------(2)
Now we apply the properties of logarithm function. We know that \[\log {m^n} = {\text{ }}n\log m\].
Then equation (2) becomes
\[ \Rightarrow \,\,\,I = \dfrac{1}{{12}}\log \left( {{a^3}{b^2}{c^4}} \right)\]-------(3)
Also we know that product property of logarithm function i.e., \[\log \left( {mn} \right) = \log m + \log n\]
Then equation (3) becomes
\[ \Rightarrow \,\,\,\,\,I = \dfrac{1}{{12}}\left[ {\log {a^3} + {\text{ log}}{b^2} + {\text{ log}}{c^4}} \right]\]
Multiply \[\dfrac{1}{{12}}\] to each term inside the parenthesis, then
\[ \Rightarrow \,\,\,\,\,I = \dfrac{1}{{12}}\log {a^3} + \dfrac{1}{{12}}{\text{log}}{b^2} + \dfrac{1}{{12}}{\text{log}}{c^4}\]----------(4)
Now again by the properties of logarithm \[\log {m^n} = {\text{ }}n\log m\]
Then equation (4) becomes
\[ \Rightarrow \,\,\,\,I = \dfrac{1}{{12}} \times 3\log a{\text{ + }}\dfrac{1}{{12}} \times 2\log b + \dfrac{1}{{12}} \times 4\log c\]
On simplification, we get
\[ \Rightarrow \,\,\,\,I = \dfrac{1}{4}\log a{\text{ + }}\dfrac{1}{6}\log b + \dfrac{1}{3}\log c\]
Hence, the expand form of the function \[\log \sqrt[{12}]{{{a^3}{b^2}{c^4}}}\] is \[\,\,I = \dfrac{1}{4}\log a{\text{ + }}\dfrac{1}{6}\log b + \dfrac{1}{3}\log c\].
Note: In mathematics logarithm is the inverse function to exponentiation that means the logarithm of a given number x is the exponent to which another fixed number. The base b must raise, to produce that number x. In the simplest case the logarithm counts the number assurances of the same factor in repeated multiplication. EX: \[10 \times 10 \times 10 = {10^3}\]the logarithm base \[10\] of \[1000\] is 3 or \[{\log _{10}}\] \[\left( {1000} \right)\]= 3. The logarithm of x base b is as \[{\log _b}\] (x) or without parentheses \[{\log _b}\]x…or without explicit base log x. Most generally, exponentiation allows any positive real number b and x where b is not equal to 1 is always unique real number y.
Complete step-by-step solution:
Let consider the given log function
\[ \Rightarrow \,\,\,I = \log \sqrt[{12}]{{{a^3}{b^2}{c^4}}}\]------------(1)
Here we have to expand it in log a, log b, log c.
Rewrite the equation (1) in exponent form, then
\[ \Rightarrow \,\,\,I = \log {\left( {{a^3}{b^2}{c^4}} \right)^{\dfrac{1}{{12}}}}\]----------(2)
Now we apply the properties of logarithm function. We know that \[\log {m^n} = {\text{ }}n\log m\].
Then equation (2) becomes
\[ \Rightarrow \,\,\,I = \dfrac{1}{{12}}\log \left( {{a^3}{b^2}{c^4}} \right)\]-------(3)
Also we know that product property of logarithm function i.e., \[\log \left( {mn} \right) = \log m + \log n\]
Then equation (3) becomes
\[ \Rightarrow \,\,\,\,\,I = \dfrac{1}{{12}}\left[ {\log {a^3} + {\text{ log}}{b^2} + {\text{ log}}{c^4}} \right]\]
Multiply \[\dfrac{1}{{12}}\] to each term inside the parenthesis, then
\[ \Rightarrow \,\,\,\,\,I = \dfrac{1}{{12}}\log {a^3} + \dfrac{1}{{12}}{\text{log}}{b^2} + \dfrac{1}{{12}}{\text{log}}{c^4}\]----------(4)
Now again by the properties of logarithm \[\log {m^n} = {\text{ }}n\log m\]
Then equation (4) becomes
\[ \Rightarrow \,\,\,\,I = \dfrac{1}{{12}} \times 3\log a{\text{ + }}\dfrac{1}{{12}} \times 2\log b + \dfrac{1}{{12}} \times 4\log c\]
On simplification, we get
\[ \Rightarrow \,\,\,\,I = \dfrac{1}{4}\log a{\text{ + }}\dfrac{1}{6}\log b + \dfrac{1}{3}\log c\]
Hence, the expand form of the function \[\log \sqrt[{12}]{{{a^3}{b^2}{c^4}}}\] is \[\,\,I = \dfrac{1}{4}\log a{\text{ + }}\dfrac{1}{6}\log b + \dfrac{1}{3}\log c\].
Note: In mathematics logarithm is the inverse function to exponentiation that means the logarithm of a given number x is the exponent to which another fixed number. The base b must raise, to produce that number x. In the simplest case the logarithm counts the number assurances of the same factor in repeated multiplication. EX: \[10 \times 10 \times 10 = {10^3}\]the logarithm base \[10\] of \[1000\] is 3 or \[{\log _{10}}\] \[\left( {1000} \right)\]= 3. The logarithm of x base b is as \[{\log _b}\] (x) or without parentheses \[{\log _b}\]x…or without explicit base log x. Most generally, exponentiation allows any positive real number b and x where b is not equal to 1 is always unique real number y.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

