
How do you expand and simplify \[(2x - 3)(3x + 5)\]?
Answer
468k+ views
Hint: Here we have to expand and simplify the given expression. Now, we will multiply any term by another one, as the associative law of multiplication is an identity property. On doing some simplification we get the required answer.
Complete Step by Step Solution:
We have to find the product of \[(2x - 3)\] and \[(3x + 5)\].
So, we can write this in the following way:
\[ \Rightarrow (2x - 3) \times (3x + 5)\]
So, firstly we will multiply the first expression by the first term in the second expression and then we will multiply the first expression by the second term in the second expression.
Now, we need to multiply the first terms and second terms accordingly:
\[ \Rightarrow (2x - 3) \times (3x + 5)\]
\[ \Rightarrow \{ (2x - 3) \times 3x\} + \{ (2x - 3) \times 5\} .\]
Now, perform the rest of the multiplication, we get:
\[ \Rightarrow \{ (2 \times 3 \times {x^2}) - (3 \times 3x)\} + \{ (2x \times 5) - (3 \times 5)\} .\]
By performing further multiplication and addition, we get:
\[ \Rightarrow (6{x^2} - 9x) + (10x - 15).\]
After re arrangements, we get:
\[ \Rightarrow (6{x^2} - 9x + 10x - 15).\]
Now, we will add the terms that have the variable of the same degree.
So,\[(2x - 3) \times (3x + 5)\]
\[ \Rightarrow (6{x^2} + x - 15).\]
\[\therefore \]The answer of the product is \[(6{x^2} + x - 15).\]
Note: Points to remember:
We need to add those variable terms that have the same degree.
Also, if constant terms are more than one, we need to add them separately.
Algebraic production of two terms defines by the following rules:
\[(1)\] Multiply only same degree variables.
\[(2)\] Multiplication of ‘\[ + \]’ and ‘\[ - \]’ gives us the ‘\[ - \]’ sign always.
\[(3)\] Always add same degree variables with variables and constant terms with constant terms.
\[(4)\]BODMAS rule is the same as the rest of multiplications.
Another way of solution:
Put the same variables and signs at the above formula:
\[(2x - 3) \times (3x + 5) = (6{x^2} - 9x) + (10x - 15)\]
\[ = (6{x^2} + x - 15)\]
Complete Step by Step Solution:
We have to find the product of \[(2x - 3)\] and \[(3x + 5)\].
So, we can write this in the following way:
\[ \Rightarrow (2x - 3) \times (3x + 5)\]
So, firstly we will multiply the first expression by the first term in the second expression and then we will multiply the first expression by the second term in the second expression.
Now, we need to multiply the first terms and second terms accordingly:
\[ \Rightarrow (2x - 3) \times (3x + 5)\]
\[ \Rightarrow \{ (2x - 3) \times 3x\} + \{ (2x - 3) \times 5\} .\]
Now, perform the rest of the multiplication, we get:
\[ \Rightarrow \{ (2 \times 3 \times {x^2}) - (3 \times 3x)\} + \{ (2x \times 5) - (3 \times 5)\} .\]
By performing further multiplication and addition, we get:
\[ \Rightarrow (6{x^2} - 9x) + (10x - 15).\]
After re arrangements, we get:
\[ \Rightarrow (6{x^2} - 9x + 10x - 15).\]
Now, we will add the terms that have the variable of the same degree.
So,\[(2x - 3) \times (3x + 5)\]
\[ \Rightarrow (6{x^2} + x - 15).\]
\[\therefore \]The answer of the product is \[(6{x^2} + x - 15).\]
Note: Points to remember:
We need to add those variable terms that have the same degree.
Also, if constant terms are more than one, we need to add them separately.
Algebraic production of two terms defines by the following rules:
\[(1)\] Multiply only same degree variables.
\[(2)\] Multiplication of ‘\[ + \]’ and ‘\[ - \]’ gives us the ‘\[ - \]’ sign always.
\[(3)\] Always add same degree variables with variables and constant terms with constant terms.
\[(4)\]BODMAS rule is the same as the rest of multiplications.
Another way of solution:
Put the same variables and signs at the above formula:
\[(2x - 3) \times (3x + 5) = (6{x^2} - 9x) + (10x - 15)\]
\[ = (6{x^2} + x - 15)\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How do you prove that the diagonals of a rectangle class 10 maths CBSE
