
Expand:
A) ${\left( {3a + 2b} \right)^2}$
B) ${\left( {5x - 7y} \right)^2}$
Answer
564.3k+ views
Hint: Here we use the formula of algebraic expansion. The formulas of algebraic expansion are ${\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} + 2\left( a \right)\left( b \right)$ and ${\left( {a - b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} - 2\left( a \right)\left( b \right)$. Now, we calculate the expansion of ${\left( {3a + 2b} \right)^2}$ and ${\left( {5x - 7y} \right)^2}$.
Complete step-by-step answer:
From the given data, to expand the equation ${\left( {3a + 2b} \right)^2}$ and ${\left( {5x - 7y} \right)^2}$ by using the above information.
A) To expand the given equation ${\left( {3a + 2b} \right)^2}$.
Here we use the algebraic formula of ${\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} + 2\left( a \right)\left( b \right)$. Now, we compare the equation ${\left( {3a + 2b} \right)^2}$ with the algebraic expression ${\left( {a + b} \right)^2}$. Where, $a = 3a{\rm{ and }}b = 2b$.
Now, we substitute the value of a as 3a and b as 2b in the algebraic expression ${\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} + 2\left( a \right)\left( b \right)$.
${\left( {3a + 2b} \right)^2} = {\left( {3a} \right)^2} + {\left( {2b} \right)^2} + 2\left( {3a} \right)\left( {2b} \right)\\
= 9{a^2} + 4{b^2} + 2\left( {6ab} \right)\\
= 9{a^2} + 4{b^2} + 12ab$
Hence, the expansion of the equation ${\left( {3a + 2b} \right)^2}$ is $9{a^2} + 4{b^2} + 12ab$.
B) To expand the given equation ${\left( {5x - 7y} \right)^2}$.
Here we use the algebraic formula of ${\left( {a - b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} - 2\left( a \right)\left( b \right)$. Now, we compare the equation ${\left( {5x - 7y} \right)^2}$ with the algebraic expression ${\left( {a - b} \right)^2}$. Where, $a = 5x{\rm{ and }}b = - 7y$.
Again, we substitute the value of a as 5x and b as $ - 7y$ in the algebraic expression ${\left( {a - b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} - 2\left( a \right)\left( b \right)$.
${\left( {5x - 7y} \right)^2} = {\left( {5x} \right)^2} + {\left( { - 7y} \right)^2} - 2\left( {5x} \right)\left( { - 7y} \right)\\
= 25{x^2} + 49{y^2} - 2\left( { - 35xy} \right)\\
= 25{x^2} + 49{y^2} + 70xy$
Hence, the expansion of the equation ${\left( {5x - 7y} \right)^2}$ is $25{x^2} + 49{y^2} + 70xy$.
Note: Here if we do not remember the formula of ${\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} + 2\left( a \right)\left( b \right)$ and ${\left( {a - b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} - 2\left( a \right)\left( b \right)$ then we simply use the multiplication method. Such as ${\left( {a + b} \right)^2} = \left( {a + b} \right) \times \left( {a + b} \right)$ and ${\left( {a - b} \right)^2} = \left( {a - b} \right) \times \left( {a - b} \right)$.
Complete step-by-step answer:
From the given data, to expand the equation ${\left( {3a + 2b} \right)^2}$ and ${\left( {5x - 7y} \right)^2}$ by using the above information.
A) To expand the given equation ${\left( {3a + 2b} \right)^2}$.
Here we use the algebraic formula of ${\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} + 2\left( a \right)\left( b \right)$. Now, we compare the equation ${\left( {3a + 2b} \right)^2}$ with the algebraic expression ${\left( {a + b} \right)^2}$. Where, $a = 3a{\rm{ and }}b = 2b$.
Now, we substitute the value of a as 3a and b as 2b in the algebraic expression ${\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} + 2\left( a \right)\left( b \right)$.
${\left( {3a + 2b} \right)^2} = {\left( {3a} \right)^2} + {\left( {2b} \right)^2} + 2\left( {3a} \right)\left( {2b} \right)\\
= 9{a^2} + 4{b^2} + 2\left( {6ab} \right)\\
= 9{a^2} + 4{b^2} + 12ab$
Hence, the expansion of the equation ${\left( {3a + 2b} \right)^2}$ is $9{a^2} + 4{b^2} + 12ab$.
B) To expand the given equation ${\left( {5x - 7y} \right)^2}$.
Here we use the algebraic formula of ${\left( {a - b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} - 2\left( a \right)\left( b \right)$. Now, we compare the equation ${\left( {5x - 7y} \right)^2}$ with the algebraic expression ${\left( {a - b} \right)^2}$. Where, $a = 5x{\rm{ and }}b = - 7y$.
Again, we substitute the value of a as 5x and b as $ - 7y$ in the algebraic expression ${\left( {a - b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} - 2\left( a \right)\left( b \right)$.
${\left( {5x - 7y} \right)^2} = {\left( {5x} \right)^2} + {\left( { - 7y} \right)^2} - 2\left( {5x} \right)\left( { - 7y} \right)\\
= 25{x^2} + 49{y^2} - 2\left( { - 35xy} \right)\\
= 25{x^2} + 49{y^2} + 70xy$
Hence, the expansion of the equation ${\left( {5x - 7y} \right)^2}$ is $25{x^2} + 49{y^2} + 70xy$.
Note: Here if we do not remember the formula of ${\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} + 2\left( a \right)\left( b \right)$ and ${\left( {a - b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2} - 2\left( a \right)\left( b \right)$ then we simply use the multiplication method. Such as ${\left( {a + b} \right)^2} = \left( {a + b} \right) \times \left( {a + b} \right)$ and ${\left( {a - b} \right)^2} = \left( {a - b} \right) \times \left( {a - b} \right)$.
Recently Updated Pages
Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Which is the largest Gulf in the world A Gulf of Aqaba class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it


