Evaluate the following using suitable identities. \[{(105)^3}\]
Answer
Verified
458.7k+ views
Hint: We break the number inside the bracket in simple terms using addition so we can apply an identity to the expansion. We use the identity \[{(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)\]to open the given term.
*\[{(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)\], where ‘a’ and ‘b’ are different numbers.
Complete step-by-step solution:
We have to evaluate \[{(105)^3}\].......................… (1)
The number inside the bracket is 105.
We can break the number 105 as \[105 = 100 + 5\]
Substitute the value of \[105 = 100 + 5\]in equation (1)
\[ \Rightarrow {(105)^3} = {(100 + 5)^3}\]
Now we use the identity \[{(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)\]to open the RHS of the equation.
Here \[a = 100,b = 5\]
\[ \Rightarrow {(105)^3} = {(100)^3} + {(5)^3} + 3 \times (100) \times (5) \times (100 + 5)\]
We use \[{x^n} = \underbrace {x \times x \times x.....x}_n\], where \[n = 3\]
\[ \Rightarrow {(105)^3} = 100 \times 100 \times 100 + 5 \times 5 \times 5 + 3 \times (100) \times (5) \times (100 + 5)\]
Multiply the required values
\[ \Rightarrow {(105)^3} = 1000000 + 125 + 1500 \times 105\]
\[ \Rightarrow {(105)^3} = 1000000 + 125 + 157500\]
Add the terms in RHS
\[ \Rightarrow {(105)^3} = 1157625\]
\[\therefore \]Value of \[{(105)^3}\] is 1157625
Note: Students are likely to make the mistake of calculating \[{(105)^3} = 105 \times 105 \times 105\]but we have to find the value using identities, so we can use different identities after breaking up the terms. Students are advised not to use calculator for calculating the direct value of \[{(105)^3}\]
Alternate Method:
We have to evaluate \[{(105)^3}\]
We use the law of exponents \[{x^n} = {x^{n - 1}} \times {x^1}\] to open the power of the number
Since we can write \[3 = 2 + 1\]
\[ \Rightarrow {(105)^3} = {(105)^{2 + 1}}\]
Now we use the law of exponents to break the RHS where base is the same and powers are added.
\[ \Rightarrow {(105)^3} = {(105)^2} \times (105)\]..................… (2)
The number inside the bracket is 105.
We can break the number 105 as \[105 = 100 + 5\]
Substitute the value of \[105 = 100 + 5\] in first bracket in equation (2)
\[ \Rightarrow {(105)^3} = {(100 + 5)^2} \times (105)\]
Now we use the identity \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] to open the first bracket in the RHS of the equation.
Here \[a = 100,b = 5\]
\[ \Rightarrow {(105)^3} = \left\{ {{{(100)}^2} + {{(5)}^2} + 2 \times (100) \times (5)} \right\} \times 105\]
We use \[{x^n} = \underbrace {x \times x \times x.....x}_n\], where \[n = 2\]
\[ \Rightarrow {(105)^3} = \left\{ {100 \times 100 + 5 \times 5 + 2 \times 100 \times 5} \right\} \times 105\]
Multiply the required values
\[ \Rightarrow {(105)^3} = \left\{ {10000 + 25 + 1000} \right\} \times 105\]
Add the terms in bracket in RHS of the equation
\[ \Rightarrow {(105)^3} = \left\{ {11025} \right\} \times 105\]
Multiply the terms in RHS
\[ \Rightarrow {(105)^3} = 1157625\]
\[\therefore \]Value of \[{(105)^3}\] is 1157625
*\[{(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)\], where ‘a’ and ‘b’ are different numbers.
Complete step-by-step solution:
We have to evaluate \[{(105)^3}\].......................… (1)
The number inside the bracket is 105.
We can break the number 105 as \[105 = 100 + 5\]
Substitute the value of \[105 = 100 + 5\]in equation (1)
\[ \Rightarrow {(105)^3} = {(100 + 5)^3}\]
Now we use the identity \[{(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)\]to open the RHS of the equation.
Here \[a = 100,b = 5\]
\[ \Rightarrow {(105)^3} = {(100)^3} + {(5)^3} + 3 \times (100) \times (5) \times (100 + 5)\]
We use \[{x^n} = \underbrace {x \times x \times x.....x}_n\], where \[n = 3\]
\[ \Rightarrow {(105)^3} = 100 \times 100 \times 100 + 5 \times 5 \times 5 + 3 \times (100) \times (5) \times (100 + 5)\]
Multiply the required values
\[ \Rightarrow {(105)^3} = 1000000 + 125 + 1500 \times 105\]
\[ \Rightarrow {(105)^3} = 1000000 + 125 + 157500\]
Add the terms in RHS
\[ \Rightarrow {(105)^3} = 1157625\]
\[\therefore \]Value of \[{(105)^3}\] is 1157625
Note: Students are likely to make the mistake of calculating \[{(105)^3} = 105 \times 105 \times 105\]but we have to find the value using identities, so we can use different identities after breaking up the terms. Students are advised not to use calculator for calculating the direct value of \[{(105)^3}\]
Alternate Method:
We have to evaluate \[{(105)^3}\]
We use the law of exponents \[{x^n} = {x^{n - 1}} \times {x^1}\] to open the power of the number
Since we can write \[3 = 2 + 1\]
\[ \Rightarrow {(105)^3} = {(105)^{2 + 1}}\]
Now we use the law of exponents to break the RHS where base is the same and powers are added.
\[ \Rightarrow {(105)^3} = {(105)^2} \times (105)\]..................… (2)
The number inside the bracket is 105.
We can break the number 105 as \[105 = 100 + 5\]
Substitute the value of \[105 = 100 + 5\] in first bracket in equation (2)
\[ \Rightarrow {(105)^3} = {(100 + 5)^2} \times (105)\]
Now we use the identity \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] to open the first bracket in the RHS of the equation.
Here \[a = 100,b = 5\]
\[ \Rightarrow {(105)^3} = \left\{ {{{(100)}^2} + {{(5)}^2} + 2 \times (100) \times (5)} \right\} \times 105\]
We use \[{x^n} = \underbrace {x \times x \times x.....x}_n\], where \[n = 2\]
\[ \Rightarrow {(105)^3} = \left\{ {100 \times 100 + 5 \times 5 + 2 \times 100 \times 5} \right\} \times 105\]
Multiply the required values
\[ \Rightarrow {(105)^3} = \left\{ {10000 + 25 + 1000} \right\} \times 105\]
Add the terms in bracket in RHS of the equation
\[ \Rightarrow {(105)^3} = \left\{ {11025} \right\} \times 105\]
Multiply the terms in RHS
\[ \Rightarrow {(105)^3} = 1157625\]
\[\therefore \]Value of \[{(105)^3}\] is 1157625
Recently Updated Pages
A house design given on an isometric dot sheet in an class 9 maths CBSE
How does air exert pressure class 9 chemistry CBSE
Name the highest summit of Nilgiri hills AVelliangiri class 9 social science CBSE
If log x+1x2+x624 then the values of twice the sum class 9 maths CBSE
How do you convert 245 into fraction and decimal class 9 maths CBSE
ABCD is a trapezium in which ABparallel DC and AB 2CD class 9 maths CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
What is pollution? How many types of pollution? Define it