
How do you evaluate \[\sin \left( {\dfrac{\pi }{5}} \right)\].
Answer
553.5k+ views
Hint: In this question, we have a trigonometric expression, which values find out. First, we simplify this expression in the form of a double angle and triple angle (trigonometric formula). Then we use the double angle and triple angle formula and solve it. After that, we convert them into quadratic equations. Then we find the roots of the quadratic equation. After that, we find the value of the given trigonometric expression.
Complete step by step solution:
In this question, we use the words double angle, triple angle. First, we know about the double angle formula.
Double angle formula: the double angle is called because they have a double angle of trigonometric functions like \[\sin 2\theta,\;\cos 2\theta \], etc.
The double angle formula is written as below in the form of\[\sin \].
\[ \Rightarrow \sin 2\theta = 2\sin \theta \cos \theta \]
Now we know about the triple angle formula.
Triple angle formula: the triple angle is called because they have a triple angle of trigonometric functions like \[\sin 3\theta,\;\cos 3\theta \], etc. the triple angle formula is written as below in the form of\[\sin \].
\[ \Rightarrow \sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta \]
Now we come to the question. In the question, the trigonometric expression is given as below.
\[ \Rightarrow \sin \left( {\dfrac{\pi }{5}} \right)\]
Let we assume that,
\[ \Rightarrow \theta = \dfrac{\pi }{5}\]
Then,
\[5\theta = \pi \]
It can be written as below.
\[ \Rightarrow 3\theta = \pi - 2\theta \]
We write both sides of the trigonometric function\[\sin \].
Then,
\[ \Rightarrow \sin 3\theta = \sin \left( {\pi - 2\theta } \right)\]
We know that\[\sin \left( {\pi - \theta } \right) = \sin \theta \].
Then, the above expression is written as.
\[\sin 3\theta = \sin 2\theta \]
Now we use the double angle and triple angle formula.
Then,
\[ \Rightarrow 3\sin \theta - 4{\sin ^3}\theta = 2\sin \theta \cos \theta \]
We divided both sides with\[\sin \theta \].
Then,
\[ \Rightarrow 3 - 4{\sin ^2}\theta = 2\cos \theta \]
We know that\[{\sin ^2}\theta = 1 - {\cos ^2}\theta \].
Then the above expression is written as.
\[ \Rightarrow 3 - 4\left( {1 - {{\cos }^2}\theta } \right) = 2\cos \theta \]
Now we solve the above expression.
\[3 - 4 + 4{\cos ^2}\theta = 2\cos \theta \]
\[ \Rightarrow - 1 + 4{\cos ^2}\theta - 2\cos \theta = 0\]
We arrange the above expression as.
\[ \Rightarrow 4{\cos ^2}\theta - 2\cos \theta - 1 = 0\]
It is a quadratic equation. Hence the root of the quadratic equation is.
\[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Then from the above quadratic equation, the root is
\[\cos \theta = \dfrac{{2 \pm \sqrt {{2^2} - 4 \times 4 \times \left( { - 1} \right)} }}{{2 \times 4}}\]
\[ \Rightarrow \cos \theta = \dfrac{{2 \pm \sqrt {4 + 16} }}{8}\]
\[ \Rightarrow \cos \theta = \dfrac{{1 \pm \sqrt 5 }}{4}\]
We know that \[\cos \theta \] cannot take negative value, then
\[ \Rightarrow \cos \theta = \dfrac{{1 + \sqrt 5 }}{4}\]
Then we find the value of\[\sin \theta \].
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\cos }^2}\theta } \]
Put the \[\cos \theta \]from above.
Then,
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\left( {\dfrac{{1 + \sqrt 5 }}{4}} \right)}^2}} \]
\[ \Rightarrow \sin \theta = \sqrt {1 - \left( {\dfrac{{1 + 5 + 2\sqrt 5 }}{{16}}} \right)} \]
\[\therefore \sin \theta = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\]
Put the value of \[\theta \] in the above.
Then,
\[\sin \dfrac{\pi }{5} = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\]
Therefore, the value of \[\sin \dfrac{\pi }{5}\] is \[\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\].
Note:
If you have a trigonometric function. And you want to find the value of that function. Then you can convert that function into double angle triple angle format. After applying the double angle and triple angle formula you can find the value of a trigonometric function.
Complete step by step solution:
In this question, we use the words double angle, triple angle. First, we know about the double angle formula.
Double angle formula: the double angle is called because they have a double angle of trigonometric functions like \[\sin 2\theta,\;\cos 2\theta \], etc.
The double angle formula is written as below in the form of\[\sin \].
\[ \Rightarrow \sin 2\theta = 2\sin \theta \cos \theta \]
Now we know about the triple angle formula.
Triple angle formula: the triple angle is called because they have a triple angle of trigonometric functions like \[\sin 3\theta,\;\cos 3\theta \], etc. the triple angle formula is written as below in the form of\[\sin \].
\[ \Rightarrow \sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta \]
Now we come to the question. In the question, the trigonometric expression is given as below.
\[ \Rightarrow \sin \left( {\dfrac{\pi }{5}} \right)\]
Let we assume that,
\[ \Rightarrow \theta = \dfrac{\pi }{5}\]
Then,
\[5\theta = \pi \]
It can be written as below.
\[ \Rightarrow 3\theta = \pi - 2\theta \]
We write both sides of the trigonometric function\[\sin \].
Then,
\[ \Rightarrow \sin 3\theta = \sin \left( {\pi - 2\theta } \right)\]
We know that\[\sin \left( {\pi - \theta } \right) = \sin \theta \].
Then, the above expression is written as.
\[\sin 3\theta = \sin 2\theta \]
Now we use the double angle and triple angle formula.
Then,
\[ \Rightarrow 3\sin \theta - 4{\sin ^3}\theta = 2\sin \theta \cos \theta \]
We divided both sides with\[\sin \theta \].
Then,
\[ \Rightarrow 3 - 4{\sin ^2}\theta = 2\cos \theta \]
We know that\[{\sin ^2}\theta = 1 - {\cos ^2}\theta \].
Then the above expression is written as.
\[ \Rightarrow 3 - 4\left( {1 - {{\cos }^2}\theta } \right) = 2\cos \theta \]
Now we solve the above expression.
\[3 - 4 + 4{\cos ^2}\theta = 2\cos \theta \]
\[ \Rightarrow - 1 + 4{\cos ^2}\theta - 2\cos \theta = 0\]
We arrange the above expression as.
\[ \Rightarrow 4{\cos ^2}\theta - 2\cos \theta - 1 = 0\]
It is a quadratic equation. Hence the root of the quadratic equation is.
\[ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Then from the above quadratic equation, the root is
\[\cos \theta = \dfrac{{2 \pm \sqrt {{2^2} - 4 \times 4 \times \left( { - 1} \right)} }}{{2 \times 4}}\]
\[ \Rightarrow \cos \theta = \dfrac{{2 \pm \sqrt {4 + 16} }}{8}\]
\[ \Rightarrow \cos \theta = \dfrac{{1 \pm \sqrt 5 }}{4}\]
We know that \[\cos \theta \] cannot take negative value, then
\[ \Rightarrow \cos \theta = \dfrac{{1 + \sqrt 5 }}{4}\]
Then we find the value of\[\sin \theta \].
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\cos }^2}\theta } \]
Put the \[\cos \theta \]from above.
Then,
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\left( {\dfrac{{1 + \sqrt 5 }}{4}} \right)}^2}} \]
\[ \Rightarrow \sin \theta = \sqrt {1 - \left( {\dfrac{{1 + 5 + 2\sqrt 5 }}{{16}}} \right)} \]
\[\therefore \sin \theta = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\]
Put the value of \[\theta \] in the above.
Then,
\[\sin \dfrac{\pi }{5} = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\]
Therefore, the value of \[\sin \dfrac{\pi }{5}\] is \[\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}\].
Note:
If you have a trigonometric function. And you want to find the value of that function. Then you can convert that function into double angle triple angle format. After applying the double angle and triple angle formula you can find the value of a trigonometric function.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

