Answer

Verified

338.7k+ views

**Hint:**Here, we will first rewrite the tangent functions of the given expression in terms of sine and cosine function. We will use various trigonometric formulas and trigonometric ratios to simplify the given trigonometric function. Trigonometric Ratios of a Particular angle are the ratios of the sides of a right angled triangle with respect to any of its acute angle.

**Formula Used:**

We will use the following formula:

1. Trigonometric Ratio: \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]

2. Trigonometric Identity: \[\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)\]

3. Trigonometric Identity: \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]

4. Trigonometric Co-Ratio: \[\cot \theta = \dfrac{1}{{\tan \theta }}\]

**Complete Step by Step Solution:**

The given Trigonometric function is \[\dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }}\].

We know that Trigonometric Ratio: \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]

Now, we will rewrite tangent in terms of sine and cosine, so we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = \dfrac{{\dfrac{{\sin 80^\circ }}{{\cos 80^\circ }} - \dfrac{{\sin 10^\circ }}{{\cos 10^\circ }}}}{{\dfrac{{\sin 70^\circ }}{{\cos 70^\circ }}}}\]

By cross multiplying the terms in the numerator, so we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = \dfrac{{\dfrac{{\sin 80^\circ \cos 10^\circ }}{{\cos 10^\circ \cos 80^\circ }} - \dfrac{{\sin 10^\circ \cos 80^\circ }}{{\cos 10^\circ \cos 80^\circ }}}}{{\dfrac{{\sin 70^\circ }}{{\cos 70^\circ }}}}\]

Now, by rewriting the equation, we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = \dfrac{{\dfrac{{\sin 80^\circ \cos 10^\circ - \sin 10^\circ \cos 80^\circ }}{{\cos 10^\circ \cos 80^\circ }}}}{{\dfrac{{\sin 70^\circ }}{{\cos 70^\circ }}}}\]

By using the Trigonometric Identity \[\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)\], we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = \dfrac{{\dfrac{{\sin \left( {80^\circ - 10^\circ } \right)}}{{\cos 10^\circ \cos 80^\circ }}}}{{\dfrac{{\sin 70^\circ }}{{\cos 70^\circ }}}}\]

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = \dfrac{{\dfrac{{\sin 70^\circ }}{{\cos 10^\circ \cos 80^\circ }}}}{{\dfrac{{\sin 70^\circ }}{{\cos 70^\circ }}}}\]

Now, by rewriting the equation, we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = \dfrac{{\sin 70^\circ \cos 70^\circ }}{{\cos 10^\circ \cos 80^\circ \sin 70^\circ }}\]

Cancelling out the common terms, we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = \dfrac{{\cos 70^\circ }}{{\cos 10^\circ \cos 80^\circ }}\]

Now, by rewriting the equation, we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = \dfrac{{\cos \left( {80^\circ - 10^\circ } \right)}}{{\cos 10^\circ \cos 80^\circ }}\]

Rewriting the equation \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\], we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = \dfrac{{\cos 80^\circ \cos 10^\circ + \sin 10^\circ \sin 80^\circ }}{{\cos 10^\circ \cos 80^\circ }}\]

Now, by segregating the terms, we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = \dfrac{{\cos 80^\circ \cos 10^\circ }}{{\cos 10^\circ \cos 80^\circ }} + \dfrac{{\sin 10^\circ \sin 80^\circ }}{{\cos 10^\circ \cos 80^\circ }}\]

We know that Trigonometric Ratio: \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]

Now, by cancelling out the common terms and by using the Trigonometric Identity, we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = 1 + \tan 10^\circ \tan 80^\circ \]

Rewriting the equation, we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = 1 + \tan 10^\circ \tan \left( {90^\circ - 10^\circ } \right)\]

Now, by using the Trigonometric Ratio \[\tan \left( {90^\circ - x} \right) = \cot x\], we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = 1 + \tan 10^\circ \cot 10^\circ \]

We know that Trigonometric Co-Ratio: \[\cot \theta = \dfrac{1}{{\tan \theta }}\]

By using the Trigonometric Ratio, we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = 1 + \tan 10^\circ \cdot \dfrac{1}{{\tan 10^\circ }}\]

Now, by cancelling out the common terms, we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = 1 + 1\]

Simplifying the equation, we get

\[ \Rightarrow \dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }} = 2\]

Therefore, the value of \[\dfrac{{\tan 80^\circ - \tan 10^\circ }}{{\tan 70^\circ }}\] is equal to 2.

**Thus, option (C) is the correct answer.**

**Note:**

We know that Trigonometric Equation is defined as an equation involving the trigonometric ratios. Trigonometric identity is an equation which is always true for all the variables. We should know that we have many trigonometric identities which are related to all the other trigonometric equations. Trigonometric Ratios are used to find the relationships between the sides of a right angle triangle. Trigonometric Ratio and Trigonometric Inverse Ratio are always inverses to each other.

Recently Updated Pages

Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Which places in India experience sunrise first and class 9 social science CBSE

The list which includes subjects of national importance class 10 social science CBSE

What is pollution? How many types of pollution? Define it

State the laws of reflection of light