
How do you evaluate $\csc \left( {\dfrac{\pi }{6}} \right)$?
Answer
538.2k+ views
Hint: Here we can proceed by finding the $\sin $ of the same angle as given and we know that $\csc x = \dfrac{1}{{\sin x}}$ and therefore we can divide both the values of the $\sin $ of the same angle and get the exact value of the $\csc \left( {\dfrac{\pi }{6}} \right)$.
Complete step by step solution:
Now we are given to find the exact value of $\csc \left( {\dfrac{\pi }{6}} \right)$
We know that:
$\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$$ - - - - (1)$
Now we can find the relation between $\sin ,\csc $ to get the value of the $\csc \left( {\dfrac{\pi }{6}} \right)$
Let us consider the triangle $ABC$ right-angled at $B$
We know that:
$\sin \theta = \dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuse}}}} - - - - (2)$
We also know that:
$\csc \theta = \dfrac{{{\text{hypotenuse}}}}{{{\text{perpendicular}}}} - - - - (3)$
Now if we multiply the equation (2) and (3) we will get:
\[\sin \theta .\csc \theta = \dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuse}}}} \times \dfrac{{{\text{hypotenuse}}}}{{{\text{perpendicular}}}} = 1\]
Hence we get that:
\[\sin \theta .\csc \theta = 1\]$ - - - (4)$
Now substituting the value of $\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$ we got in equation (1) in the above equation (4), we get:
\[\sin \theta .\csc \theta = 1\]
\[
\sin \dfrac{\pi }{6}.\csc \dfrac{\pi }{6} = 1 \\
\dfrac{1}{2}.\csc \dfrac{\pi }{6} = 1 \\
\]
So we know the value of $\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$
So putting it in above, we get:
\[
\dfrac{1}{2}.\csc \dfrac{\pi }{6} = 1 \\
\csc \dfrac{\pi }{6} = 2 \\
\]
Hence for this, we must know all the trigonometric relations between all trigonometric functions because due to this all the general values of all trigonometric functions can be found.
Note:
Here in these types of problems where we are asked to find the value of the tangent or cotangent of any angle, we must know the basic values of the sine and cosine of the angles like $0^\circ,30^\circ,45^\circ,60^\circ,90^\circ $ and then we can easily calculate the same angles of the tangent, cotangent, secant, and cosecant of that same angle.
Complete step by step solution:
Now we are given to find the exact value of $\csc \left( {\dfrac{\pi }{6}} \right)$
We know that:
$\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$$ - - - - (1)$
Now we can find the relation between $\sin ,\csc $ to get the value of the $\csc \left( {\dfrac{\pi }{6}} \right)$
Let us consider the triangle $ABC$ right-angled at $B$
We know that:
$\sin \theta = \dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuse}}}} - - - - (2)$
We also know that:
$\csc \theta = \dfrac{{{\text{hypotenuse}}}}{{{\text{perpendicular}}}} - - - - (3)$
Now if we multiply the equation (2) and (3) we will get:
\[\sin \theta .\csc \theta = \dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuse}}}} \times \dfrac{{{\text{hypotenuse}}}}{{{\text{perpendicular}}}} = 1\]
Hence we get that:
\[\sin \theta .\csc \theta = 1\]$ - - - (4)$
Now substituting the value of $\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$ we got in equation (1) in the above equation (4), we get:
\[\sin \theta .\csc \theta = 1\]
\[
\sin \dfrac{\pi }{6}.\csc \dfrac{\pi }{6} = 1 \\
\dfrac{1}{2}.\csc \dfrac{\pi }{6} = 1 \\
\]
So we know the value of $\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$
So putting it in above, we get:
\[
\dfrac{1}{2}.\csc \dfrac{\pi }{6} = 1 \\
\csc \dfrac{\pi }{6} = 2 \\
\]
Hence for this, we must know all the trigonometric relations between all trigonometric functions because due to this all the general values of all trigonometric functions can be found.
Note:
Here in these types of problems where we are asked to find the value of the tangent or cotangent of any angle, we must know the basic values of the sine and cosine of the angles like $0^\circ,30^\circ,45^\circ,60^\circ,90^\circ $ and then we can easily calculate the same angles of the tangent, cotangent, secant, and cosecant of that same angle.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
The slogan Jai Hind was given by A Lal Bahadur Shastri class 10 social science CBSE

Show that the points 11 52 and 9 5 are collinear-class-10-maths-CBSE

List out three methods of soil conservation

Find the mode of 10 12 11 10 15 20 19 21 11 9 10 class 10 maths CBSE

The curved surface area of a cone of slant height l class 10 maths CBSE

The involuntary action in the body are controlled by class 10 biology CBSE

