Answer
Verified
427.5k+ views
Hint: Here we can proceed by finding the $\sin $ of the same angle as given and we know that $\csc x = \dfrac{1}{{\sin x}}$ and therefore we can divide both the values of the $\sin $ of the same angle and get the exact value of the $\csc \left( {\dfrac{\pi }{6}} \right)$.
Complete step by step solution:
Now we are given to find the exact value of $\csc \left( {\dfrac{\pi }{6}} \right)$
We know that:
$\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$$ - - - - (1)$
Now we can find the relation between $\sin ,\csc $ to get the value of the $\csc \left( {\dfrac{\pi }{6}} \right)$
Let us consider the triangle $ABC$ right-angled at $B$
We know that:
$\sin \theta = \dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuse}}}} - - - - (2)$
We also know that:
$\csc \theta = \dfrac{{{\text{hypotenuse}}}}{{{\text{perpendicular}}}} - - - - (3)$
Now if we multiply the equation (2) and (3) we will get:
\[\sin \theta .\csc \theta = \dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuse}}}} \times \dfrac{{{\text{hypotenuse}}}}{{{\text{perpendicular}}}} = 1\]
Hence we get that:
\[\sin \theta .\csc \theta = 1\]$ - - - (4)$
Now substituting the value of $\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$ we got in equation (1) in the above equation (4), we get:
\[\sin \theta .\csc \theta = 1\]
\[
\sin \dfrac{\pi }{6}.\csc \dfrac{\pi }{6} = 1 \\
\dfrac{1}{2}.\csc \dfrac{\pi }{6} = 1 \\
\]
So we know the value of $\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$
So putting it in above, we get:
\[
\dfrac{1}{2}.\csc \dfrac{\pi }{6} = 1 \\
\csc \dfrac{\pi }{6} = 2 \\
\]
Hence for this, we must know all the trigonometric relations between all trigonometric functions because due to this all the general values of all trigonometric functions can be found.
Note:
Here in these types of problems where we are asked to find the value of the tangent or cotangent of any angle, we must know the basic values of the sine and cosine of the angles like $0^\circ,30^\circ,45^\circ,60^\circ,90^\circ $ and then we can easily calculate the same angles of the tangent, cotangent, secant, and cosecant of that same angle.
Complete step by step solution:
Now we are given to find the exact value of $\csc \left( {\dfrac{\pi }{6}} \right)$
We know that:
$\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$$ - - - - (1)$
Now we can find the relation between $\sin ,\csc $ to get the value of the $\csc \left( {\dfrac{\pi }{6}} \right)$
Let us consider the triangle $ABC$ right-angled at $B$
We know that:
$\sin \theta = \dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuse}}}} - - - - (2)$
We also know that:
$\csc \theta = \dfrac{{{\text{hypotenuse}}}}{{{\text{perpendicular}}}} - - - - (3)$
Now if we multiply the equation (2) and (3) we will get:
\[\sin \theta .\csc \theta = \dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuse}}}} \times \dfrac{{{\text{hypotenuse}}}}{{{\text{perpendicular}}}} = 1\]
Hence we get that:
\[\sin \theta .\csc \theta = 1\]$ - - - (4)$
Now substituting the value of $\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$ we got in equation (1) in the above equation (4), we get:
\[\sin \theta .\csc \theta = 1\]
\[
\sin \dfrac{\pi }{6}.\csc \dfrac{\pi }{6} = 1 \\
\dfrac{1}{2}.\csc \dfrac{\pi }{6} = 1 \\
\]
So we know the value of $\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$
So putting it in above, we get:
\[
\dfrac{1}{2}.\csc \dfrac{\pi }{6} = 1 \\
\csc \dfrac{\pi }{6} = 2 \\
\]
Hence for this, we must know all the trigonometric relations between all trigonometric functions because due to this all the general values of all trigonometric functions can be found.
Note:
Here in these types of problems where we are asked to find the value of the tangent or cotangent of any angle, we must know the basic values of the sine and cosine of the angles like $0^\circ,30^\circ,45^\circ,60^\circ,90^\circ $ and then we can easily calculate the same angles of the tangent, cotangent, secant, and cosecant of that same angle.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it