
Eliminate x, y, z from the equations\[yz={{a}^{2}},zx={{b}^{2}},xy={{c}^{2}},{{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{d}^{2}}\].
Answer
606.3k+ views
Hint:
Make the LHS of the first 3 equations the same. Then find the individual values of x, y and z. Substitute the values in the 4th equation, simplify the equation and you will get the answer without variables x, y and z.
Complete step-by-step answer:
We are given 4 equations,
\[\begin{align}
& yz={{a}^{2}}-(1) \\
& zx={{b}^{2}}-(2) \\
& xy={{c}^{2}}-(3) \\
& {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{d}^{2}}-(4) \\
\end{align}\]
The following 4 expressions are algebraic expressions built up from integers, constants, variables and the algebraic expression (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number).
Multiply ‘x’ on the LHS and RHS of equation (1).
Multiply ‘y’ on the LHS and RHS of equation (2).
Multiply ‘z’ on the LHS and RHS of equation (3).
\[\therefore \]Equation (1) becomes, \[xyz=x{{a}^{2}}\].
Equation (2) becomes, \[xyz=y{{b}^{2}}\].
Equation (3) becomes, \[xyz=z{{c}^{2}}\].
The LHS of all the above expressions are the same.
\[\therefore x{{a}^{2}}=y{{b}^{2}}=z{{c}^{2}}-(4)\]
Now we can put\[{{a}^{2}}x={{b}^{2}}y={{c}^{2}}z=k\], where k is a constant.
\[\begin{align}
& \therefore {{a}^{2}}x=k,{{b}^{2}}y=k,{{c}^{2}}z=k \\
& \therefore x=\dfrac{k}{{{a}^{2}}} \\
\end{align}\]
Similarly, \[y=\dfrac{k}{{{b}^{2}}}\]and \[z=\dfrac{k}{{{c}^{2}}}-(5)\]
So we find the values of x, y and z. Now substitute these values in equation (4).
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{d}^{2}} \\
& {{\left( \dfrac{k}{{{a}^{2}}} \right)}^{2}}+{{\left( \dfrac{k}{{{b}^{2}}} \right)}^{2}}+{{\left( \dfrac{k}{{{c}^{2}}} \right)}^{2}}={{d}^{2}} \\
& \Rightarrow \dfrac{{{k}^{2}}}{{{a}^{4}}}+\dfrac{{{k}^{2}}}{{{b}^{4}}}+\dfrac{{{k}^{2}}}{{{c}^{4}}}={{d}^{2}} \\
\end{align}\]
Take \[{{k}^{2}}\]common from LHS and simplify the LHS.
\[\begin{align}
& {{k}^{2}}\left[ \dfrac{{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}+{{a}^{4}}{{b}^{4}}}{{{a}^{4}}{{b}^{4}}{{c}^{4}}} \right]={{d}^{2}} \\
& \therefore {{k}^{2}}\left[ {{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}} \right]={{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}} \\
& \therefore {{k}^{2}}=\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}} \\
\end{align}\]
Taking square root on both sides.
\[\begin{align}
& \sqrt{{{k}^{2}}}=\sqrt{\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}}} \\
& k=\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}}} \\
\end{align}\]
We know, \[y=\dfrac{k}{{{b}^{2}}}\].
\[\therefore y=\dfrac{d{{a}^{2}}{{b}^{2}}{{c}^{2}}}{{{b}^{2}}\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}=\dfrac{d{{a}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}\]
Similarly, \[z=\dfrac{k}{{{c}^{2}}}\].
\[\therefore z=\dfrac{d{{a}^{2}}{{b}^{2}}{{c}^{2}}}{{{c}^{2}}\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}=\dfrac{d{{a}^{2}}{{b}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}\]
\[yz={{a}^{2}}\], substitute the values of y and z on this equation (1).
\[\begin{align}
& \left( \dfrac{d{{a}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}} \right)\left( \dfrac{d{{a}^{2}}{{b}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}} \right)={{a}^{2}} \\
& \Rightarrow \dfrac{d{{a}^{4}}{{b}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}={{a}^{2}} \\
\end{align}\]
Cancel out \[{{a}^{2}}\]on LHS and RHS.
\[\begin{align}
& \dfrac{d{{a}^{4}}{{b}^{2}}{{c}^{2}}}{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}=1 \\
& \therefore d{{a}^{4}}{{b}^{2}}{{c}^{2}}={{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}} \\
\end{align}\]
Hence we eliminated x, y, z and got the following expressions.
Note:
After getting the value of k, formulate the values in equation (5) and find the values of y and z. By this we can eliminate the constant ‘k’ which we have assumed. Then finally substitute the values of y and z in equation (1). We will get the final expression eliminating x, y and z.
Make the LHS of the first 3 equations the same. Then find the individual values of x, y and z. Substitute the values in the 4th equation, simplify the equation and you will get the answer without variables x, y and z.
Complete step-by-step answer:
We are given 4 equations,
\[\begin{align}
& yz={{a}^{2}}-(1) \\
& zx={{b}^{2}}-(2) \\
& xy={{c}^{2}}-(3) \\
& {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{d}^{2}}-(4) \\
\end{align}\]
The following 4 expressions are algebraic expressions built up from integers, constants, variables and the algebraic expression (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number).
Multiply ‘x’ on the LHS and RHS of equation (1).
Multiply ‘y’ on the LHS and RHS of equation (2).
Multiply ‘z’ on the LHS and RHS of equation (3).
\[\therefore \]Equation (1) becomes, \[xyz=x{{a}^{2}}\].
Equation (2) becomes, \[xyz=y{{b}^{2}}\].
Equation (3) becomes, \[xyz=z{{c}^{2}}\].
The LHS of all the above expressions are the same.
\[\therefore x{{a}^{2}}=y{{b}^{2}}=z{{c}^{2}}-(4)\]
Now we can put\[{{a}^{2}}x={{b}^{2}}y={{c}^{2}}z=k\], where k is a constant.
\[\begin{align}
& \therefore {{a}^{2}}x=k,{{b}^{2}}y=k,{{c}^{2}}z=k \\
& \therefore x=\dfrac{k}{{{a}^{2}}} \\
\end{align}\]
Similarly, \[y=\dfrac{k}{{{b}^{2}}}\]and \[z=\dfrac{k}{{{c}^{2}}}-(5)\]
So we find the values of x, y and z. Now substitute these values in equation (4).
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{d}^{2}} \\
& {{\left( \dfrac{k}{{{a}^{2}}} \right)}^{2}}+{{\left( \dfrac{k}{{{b}^{2}}} \right)}^{2}}+{{\left( \dfrac{k}{{{c}^{2}}} \right)}^{2}}={{d}^{2}} \\
& \Rightarrow \dfrac{{{k}^{2}}}{{{a}^{4}}}+\dfrac{{{k}^{2}}}{{{b}^{4}}}+\dfrac{{{k}^{2}}}{{{c}^{4}}}={{d}^{2}} \\
\end{align}\]
Take \[{{k}^{2}}\]common from LHS and simplify the LHS.
\[\begin{align}
& {{k}^{2}}\left[ \dfrac{{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}+{{a}^{4}}{{b}^{4}}}{{{a}^{4}}{{b}^{4}}{{c}^{4}}} \right]={{d}^{2}} \\
& \therefore {{k}^{2}}\left[ {{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}} \right]={{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}} \\
& \therefore {{k}^{2}}=\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}} \\
\end{align}\]
Taking square root on both sides.
\[\begin{align}
& \sqrt{{{k}^{2}}}=\sqrt{\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}}} \\
& k=\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}}} \\
\end{align}\]
We know, \[y=\dfrac{k}{{{b}^{2}}}\].
\[\therefore y=\dfrac{d{{a}^{2}}{{b}^{2}}{{c}^{2}}}{{{b}^{2}}\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}=\dfrac{d{{a}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}\]
Similarly, \[z=\dfrac{k}{{{c}^{2}}}\].
\[\therefore z=\dfrac{d{{a}^{2}}{{b}^{2}}{{c}^{2}}}{{{c}^{2}}\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}=\dfrac{d{{a}^{2}}{{b}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}\]
\[yz={{a}^{2}}\], substitute the values of y and z on this equation (1).
\[\begin{align}
& \left( \dfrac{d{{a}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}} \right)\left( \dfrac{d{{a}^{2}}{{b}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}} \right)={{a}^{2}} \\
& \Rightarrow \dfrac{d{{a}^{4}}{{b}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}={{a}^{2}} \\
\end{align}\]
Cancel out \[{{a}^{2}}\]on LHS and RHS.
\[\begin{align}
& \dfrac{d{{a}^{4}}{{b}^{2}}{{c}^{2}}}{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}=1 \\
& \therefore d{{a}^{4}}{{b}^{2}}{{c}^{2}}={{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}} \\
\end{align}\]
Hence we eliminated x, y, z and got the following expressions.
Note:
After getting the value of k, formulate the values in equation (5) and find the values of y and z. By this we can eliminate the constant ‘k’ which we have assumed. Then finally substitute the values of y and z in equation (1). We will get the final expression eliminating x, y and z.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

