Each angle of a regular hexagon is $\_\_\_\_$.
Answer
281.1k+ views
Hint: Before solving this question we should know what a hexagon is. A hexagon is a type of polygon which has $6$ sides and $6$ vertices. We know that there are two types of hexagon- (a) Regular hexagon and (b) Irregular hexagon. A regular hexagon has all angles of the same measures and all sides of the same length. We can say that a regular hexagon is equilateral as well as equiangular.
Complete step by step solution:
Here we have to find the measure of each angle of a regular hexagon.
Let us first draw the image of a regular hexagon.
Now we know that the sum of the internal angles of a regular hexagon is always ${720^ \circ }$.
We also know that all the angles and sides of a regular hexagon are equal, so let us assume that the measure of each angle is $x$.
Now we can write $x + x + x + x + x + x = 720$ (Sum of the interior angles of a hexagon).
On solving we have $6x = 720$, so it gives us $x = \dfrac{{720}}{6} = 120$.
Hence the measure of each angle of a regular hexagon is ${120^ \circ }$.
Note:
We should note that hexagon is also further classified into Convex or concave. If a hexagon is convex then none of its interior angle would be greater than ${180^ \circ }$ and if the hexagon is concave then the one or more of its interior angles is greater than ${180^ \circ }$. We should have the clear concept of different types of polygons and their properties before solving this kind of question.
Complete step by step solution:
Here we have to find the measure of each angle of a regular hexagon.
Let us first draw the image of a regular hexagon.

Now we know that the sum of the internal angles of a regular hexagon is always ${720^ \circ }$.
We also know that all the angles and sides of a regular hexagon are equal, so let us assume that the measure of each angle is $x$.
Now we can write $x + x + x + x + x + x = 720$ (Sum of the interior angles of a hexagon).
On solving we have $6x = 720$, so it gives us $x = \dfrac{{720}}{6} = 120$.
Hence the measure of each angle of a regular hexagon is ${120^ \circ }$.
Note:
We should note that hexagon is also further classified into Convex or concave. If a hexagon is convex then none of its interior angle would be greater than ${180^ \circ }$ and if the hexagon is concave then the one or more of its interior angles is greater than ${180^ \circ }$. We should have the clear concept of different types of polygons and their properties before solving this kind of question.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
