Each angle of a regular hexagon is $\_\_\_\_$.
Last updated date: 19th Mar 2023
•
Total views: 205.5k
•
Views today: 4.85k
Answer
205.5k+ views
Hint: Before solving this question we should know what a hexagon is. A hexagon is a type of polygon which has $6$ sides and $6$ vertices. We know that there are two types of hexagon- (a) Regular hexagon and (b) Irregular hexagon. A regular hexagon has all angles of the same measures and all sides of the same length. We can say that a regular hexagon is equilateral as well as equiangular.
Complete step by step solution:
Here we have to find the measure of each angle of a regular hexagon.
Let us first draw the image of a regular hexagon.
Now we know that the sum of the internal angles of a regular hexagon is always ${720^ \circ }$.
We also know that all the angles and sides of a regular hexagon are equal, so let us assume that the measure of each angle is $x$.
Now we can write $x + x + x + x + x + x = 720$ (Sum of the interior angles of a hexagon).
On solving we have $6x = 720$, so it gives us $x = \dfrac{{720}}{6} = 120$.
Hence the measure of each angle of a regular hexagon is ${120^ \circ }$.
Note:
We should note that hexagon is also further classified into Convex or concave. If a hexagon is convex then none of its interior angle would be greater than ${180^ \circ }$ and if the hexagon is concave then the one or more of its interior angles is greater than ${180^ \circ }$. We should have the clear concept of different types of polygons and their properties before solving this kind of question.
Complete step by step solution:
Here we have to find the measure of each angle of a regular hexagon.
Let us first draw the image of a regular hexagon.

Now we know that the sum of the internal angles of a regular hexagon is always ${720^ \circ }$.
We also know that all the angles and sides of a regular hexagon are equal, so let us assume that the measure of each angle is $x$.
Now we can write $x + x + x + x + x + x = 720$ (Sum of the interior angles of a hexagon).
On solving we have $6x = 720$, so it gives us $x = \dfrac{{720}}{6} = 120$.
Hence the measure of each angle of a regular hexagon is ${120^ \circ }$.
Note:
We should note that hexagon is also further classified into Convex or concave. If a hexagon is convex then none of its interior angle would be greater than ${180^ \circ }$ and if the hexagon is concave then the one or more of its interior angles is greater than ${180^ \circ }$. We should have the clear concept of different types of polygons and their properties before solving this kind of question.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
