Answer

Verified

434.4k+ views

Hint: We have two of the angles known in a triangle, then using the sum of the angle property of a triangle we can easily calculate the third angle. It will help in determining the triangle’s rough structure. Further, the exact triangle can be drawn with the help of known side length.

Complete step-by-step answer:

Here, we have \[\angle C={{30}^{\circ }}\] and \[\angle A={{105}^{\circ }}\] of a triangle $ABC$, and from the sum angle property of a triangle, we have

$\Rightarrow \angle A+\angle B+\angle C={{180}^{\circ }}...\text{ }\left( 1 \right)$

Substituting the values of $\angle A$ and $\angle C$ in equation (1), we get

$\begin{align}

& \Rightarrow \angle A+\angle B+\angle C={{180}^{\circ }} \\

& \Rightarrow {{105}^{\circ }}+\angle B+{{30}^{\circ }}={{180}^{\circ }} \\

& \Rightarrow \angle B+{{135}^{\circ }}={{180}^{\circ }} \\

\end{align}$

On transposing values in the above equation, we get

$\begin{align}

& \Rightarrow \angle B+{{135}^{\circ }}={{180}^{\circ }} \\

& \Rightarrow \angle B={{180}^{\circ }}-{{135}^{\circ }} \\

& \Rightarrow \angle B={{45}^{\circ }} \\

\end{align}$

A rough structure of the triangle can be known, i.e.,

Now, to build up the exact structure of a given triangle, we have to use constructions, i.e., there would be certain steps of construction to build exact angles with exact side lengths.

Thus, steps of construction are:

Now, to build up the exact structure of a given triangle, we have to use constructions, i.e., there would be certain steps of construction to build exact angles with exact side lengths.

Thus, steps of construction are:

1.Drawing a line $BC$ of length $6cm$.

2.Then, drawing a ray $CN$ making an angle of ${{30}^{\circ }}$ at vertex $C$.

3.Again, drawing a ray $BM$ making an angle of ${{45}^{\circ }}$ at vertex $B$.

4.Now, there would be a point of intersection of rays $CN$ and $BM$ which would definitely be vertex $A$.

5.This $ABC$ is the triangle we build with given dimensions but we have to draw a similar triangle with sides of length $\dfrac{2}{3}$of corresponding length of sides of $\Delta ABC$.

6.Thus, drawing a ray $BX$ making an acute angle with $BC$ on the side opposite to the vertex $A$.

7.Now, dividing the whole length of $BX$ into three equal parts and naming them as ${{B}_{1}},{{B}_{2}},{{B}_{3}}$ along the length towards $X$, i.e., $B{{B}_{1}}={{B}_{1}}{{B}_{2}}={{B}_{2}}{{B}_{3}}$.

8.Now, to create a complete triangle join ${{B}_{3}}C$ and drawing a line parallel to ${{B}_{3}}C$ from point ${{B}_{2}}$ towards the line $BC$, intersecting it at point let’s say, ${{C}_{2}}$.

9.Again, drawing a line from point ${{C}_{2}}$ towards line $AB$ parallel to $AC$, intersecting it at point ${{A}_{2}}$.

10.Thus, a new triangle formed on joining these lines, we get $\Delta {{A}_{2}}B{{C}_{2}}$ as our required triangle with corresponding sides equal to $\dfrac{2}{3}$ length of $\Delta ABC$.

Hence, $\Delta {{A}_{2}}B{{C}_{2}}$ is our required triangle with corresponding sides equal to $\dfrac{2}{3}$ length of $\Delta ABC$.

Note: There are several ways to construct similar triangles, having sides’ lengths correspondingly equal to other triangles. But an easier way could be to use the similar triangle properties, to find the exact length of sides of the new triangle and then construct it, using AAA or AA properties.

Complete step-by-step answer:

Here, we have \[\angle C={{30}^{\circ }}\] and \[\angle A={{105}^{\circ }}\] of a triangle $ABC$, and from the sum angle property of a triangle, we have

$\Rightarrow \angle A+\angle B+\angle C={{180}^{\circ }}...\text{ }\left( 1 \right)$

Substituting the values of $\angle A$ and $\angle C$ in equation (1), we get

$\begin{align}

& \Rightarrow \angle A+\angle B+\angle C={{180}^{\circ }} \\

& \Rightarrow {{105}^{\circ }}+\angle B+{{30}^{\circ }}={{180}^{\circ }} \\

& \Rightarrow \angle B+{{135}^{\circ }}={{180}^{\circ }} \\

\end{align}$

On transposing values in the above equation, we get

$\begin{align}

& \Rightarrow \angle B+{{135}^{\circ }}={{180}^{\circ }} \\

& \Rightarrow \angle B={{180}^{\circ }}-{{135}^{\circ }} \\

& \Rightarrow \angle B={{45}^{\circ }} \\

\end{align}$

A rough structure of the triangle can be known, i.e.,

Now, to build up the exact structure of a given triangle, we have to use constructions, i.e., there would be certain steps of construction to build exact angles with exact side lengths.

Thus, steps of construction are:

Now, to build up the exact structure of a given triangle, we have to use constructions, i.e., there would be certain steps of construction to build exact angles with exact side lengths.

Thus, steps of construction are:

1.Drawing a line $BC$ of length $6cm$.

2.Then, drawing a ray $CN$ making an angle of ${{30}^{\circ }}$ at vertex $C$.

3.Again, drawing a ray $BM$ making an angle of ${{45}^{\circ }}$ at vertex $B$.

4.Now, there would be a point of intersection of rays $CN$ and $BM$ which would definitely be vertex $A$.

5.This $ABC$ is the triangle we build with given dimensions but we have to draw a similar triangle with sides of length $\dfrac{2}{3}$of corresponding length of sides of $\Delta ABC$.

6.Thus, drawing a ray $BX$ making an acute angle with $BC$ on the side opposite to the vertex $A$.

7.Now, dividing the whole length of $BX$ into three equal parts and naming them as ${{B}_{1}},{{B}_{2}},{{B}_{3}}$ along the length towards $X$, i.e., $B{{B}_{1}}={{B}_{1}}{{B}_{2}}={{B}_{2}}{{B}_{3}}$.

8.Now, to create a complete triangle join ${{B}_{3}}C$ and drawing a line parallel to ${{B}_{3}}C$ from point ${{B}_{2}}$ towards the line $BC$, intersecting it at point let’s say, ${{C}_{2}}$.

9.Again, drawing a line from point ${{C}_{2}}$ towards line $AB$ parallel to $AC$, intersecting it at point ${{A}_{2}}$.

10.Thus, a new triangle formed on joining these lines, we get $\Delta {{A}_{2}}B{{C}_{2}}$ as our required triangle with corresponding sides equal to $\dfrac{2}{3}$ length of $\Delta ABC$.

Hence, $\Delta {{A}_{2}}B{{C}_{2}}$ is our required triangle with corresponding sides equal to $\dfrac{2}{3}$ length of $\Delta ABC$.

Note: There are several ways to construct similar triangles, having sides’ lengths correspondingly equal to other triangles. But an easier way could be to use the similar triangle properties, to find the exact length of sides of the new triangle and then construct it, using AAA or AA properties.

Recently Updated Pages

Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

The branch of science which deals with nature and natural class 10 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram showing the external features of fish class 11 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is BLO What is the full form of BLO class 8 social science CBSE