Answer
Verified
429.6k+ views
Hint: In this question, we need to find the distance of the point (p,q,r) from the x axis. For this, we will evaluate the point on the x axis which is perpendicular to (p,q,r) and then find the distance between two points obtained. Distance between two points $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ is given by \[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}\].
Complete step-by-step solution
Here, we need to find the distance of the point (p,q,r) from the x-axis. Our diagram looks like this,
Let us suppose B as point (p,q,r) and let us suppose the point A on the x-axis is perpendicular from (p,q,r). As we know, a point on the x-axis does not have any value of y coordinate and z coordinate. Hence, any point A on the x-axis will have y coordinate and z coordinate as o. Since A is perpendicular to (p,q,r) so x coordinate will be p only. Hence point A will be (p,0,0). So, now we need to find the distance between B(p,q,r) and A(p,0,0).
As we know, distance between two points $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ is given by \[d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}\].
So here ${{x}_{1}}$ is equal to p, ${{x}_{2}}$ is equal to p, ${{y}_{1}}$ is equal to q, ${{y}_{2}}$ is equal to 0, ${{z}_{1}}$ is equal to r and ${{z}_{2}}$ is equal to 0.
Hence, distance between B(p,q,r) and A(p,0,0) becomes,
\[\begin{align}
& \Rightarrow d=\sqrt{{{\left( p-p \right)}^{2}}+{{\left( q-0 \right)}^{2}}+{{\left( r-0 \right)}^{2}}} \\
& \Rightarrow d=\sqrt{0+{{q}^{2}}+{{r}^{2}}} \\
& \Rightarrow d=\sqrt{{{q}^{2}}+{{r}^{2}}} \\
\end{align}\]
Hence, the distance between point (p,q,r) and x axis is $\sqrt{{{q}^{2}}+{{r}^{2}}}$.
Note: Students should carefully find the coordinates of the point on the x-axis from which distance will be measured. Remember that, distance from any point to a line or plane is equal to the distance between the point and the foot of the perpendicular on the plane (or line). Students should note that we can take ${{y}_{1}}$ as 0 and ${{y}_{2}}$ as q also. Similarly, ${{z}_{1}}$ as 0 and ${{z}_{2}}$ as “r” also. It will result in the same because terms will be squared and we know that the distance from A to B is equal to the distance from B to A.
Complete step-by-step solution
Here, we need to find the distance of the point (p,q,r) from the x-axis. Our diagram looks like this,
Let us suppose B as point (p,q,r) and let us suppose the point A on the x-axis is perpendicular from (p,q,r). As we know, a point on the x-axis does not have any value of y coordinate and z coordinate. Hence, any point A on the x-axis will have y coordinate and z coordinate as o. Since A is perpendicular to (p,q,r) so x coordinate will be p only. Hence point A will be (p,0,0). So, now we need to find the distance between B(p,q,r) and A(p,0,0).
As we know, distance between two points $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ is given by \[d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}\].
So here ${{x}_{1}}$ is equal to p, ${{x}_{2}}$ is equal to p, ${{y}_{1}}$ is equal to q, ${{y}_{2}}$ is equal to 0, ${{z}_{1}}$ is equal to r and ${{z}_{2}}$ is equal to 0.
Hence, distance between B(p,q,r) and A(p,0,0) becomes,
\[\begin{align}
& \Rightarrow d=\sqrt{{{\left( p-p \right)}^{2}}+{{\left( q-0 \right)}^{2}}+{{\left( r-0 \right)}^{2}}} \\
& \Rightarrow d=\sqrt{0+{{q}^{2}}+{{r}^{2}}} \\
& \Rightarrow d=\sqrt{{{q}^{2}}+{{r}^{2}}} \\
\end{align}\]
Hence, the distance between point (p,q,r) and x axis is $\sqrt{{{q}^{2}}+{{r}^{2}}}$.
Note: Students should carefully find the coordinates of the point on the x-axis from which distance will be measured. Remember that, distance from any point to a line or plane is equal to the distance between the point and the foot of the perpendicular on the plane (or line). Students should note that we can take ${{y}_{1}}$ as 0 and ${{y}_{2}}$ as q also. Similarly, ${{z}_{1}}$ as 0 and ${{z}_{2}}$ as “r” also. It will result in the same because terms will be squared and we know that the distance from A to B is equal to the distance from B to A.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell