
Differentiate with respect to $x$:
$
{\text{(a) tan}}h4x \\
{\text{(b) sec}}h2x \\
$
Answer
615.9k+ views
Hint: In this question first we have to find hyperbolic functions ${\text{tan}}h4x$ and ${\text{sec}}h2x$ in terms of ${e^{kx}}$ by using relations $\sin hkx = \dfrac{{{e^{kx}} - {e^{ - kx}}}}{2}$ and $\cos hkx = \dfrac{{{e^{kx}} + {e^{ - kx}}}}{2}$. Then we differentiate ${\text{tan}}h4x$ and ${\text{sec}}h2x$ w.r.t. $x$.
Complete Step-by-Step solution:
Hyperbolic functions
$
\Rightarrow \sin hkx = \dfrac{{{e^{kx}} - {e^{ - kx}}}}{2}{\text{ eq}}{\text{.1}} \\
\Rightarrow \cos hkx = \dfrac{{{e^{kx}} + {e^{ - kx}}}}{2}{\text{ eq}}{\text{.2}} \\
$
Differentiation of $\dfrac{u}{v}$ w.r.t. to$x$
$ \Rightarrow \dfrac{d}{{dx}}\dfrac{u}{v} = \dfrac{{\dfrac{{vdu}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}{\text{ eq}}{\text{.3}}$
${\text{(a) tan}}h4x$
Divide eq.1 and eq.2, we get
$ \Rightarrow \tanh kx{\text{ }} = {\text{ }}\dfrac{{{e^{kx}} - {e^{ - kx}}}}{{{e^{kx}} + {e^{ - kx}}}}$
Put h=4 in above equation we get
$ \Rightarrow \tan 4kx{\text{ }} = {\text{ }}\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}}{\text{ eq}}{\text{.4}}$
Differentiate eq.4 w.r.t to $x$using formula of eq,3
$$$$$
\Rightarrow \dfrac{{d\tan h4x}}{{dx}} = {\text{ }}\dfrac{d}{{dx}}(\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}}) \\
{\text{ = }}\dfrac{{({e^{4x}} + {e^{ - 4x}})\dfrac{d}{{dx}}({e^{4x}} - {e^{ - 4x}}) - ({e^{4x}} - {e^{ - 4x}})\dfrac{d}{{dx}}({e^{4x}} + {e^{ - 4x}})}}{{{{({e^{4x}} + {e^{ - 4x}})}^2}}} \\
{\text{ = }}\dfrac{{4{{({e^{4x}} + {e^{ - 4x}})}^2} - 4{{({e^{4x}} - {e^{ - 4x}})}^2}}}{{{{({e^{4x}} + {e^{ - 4x}})}^2}}} \\
{\text{ = 4\{ 1}} - {{\text{(}}\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}})^2}\} \\
{\text{ = 4(1}} - \tan {h^2}4x) \\
$
${\text{(b) sec}}h2x$
We know that $\sec h4x = \dfrac{1}{{\cos h4x}}$
$ \Rightarrow \sec h4x = \dfrac{2}{{{e^{kx}} + {e^{ - kx}}}}$ eq.5
Differentiation eq. 4 w.r.t to $x$using formula of eq,3
$
\Rightarrow \dfrac{d}{{dx}}\sec h2x = \dfrac{d}{{dx}}(\dfrac{2}{{{e^{2x}} + {e^{ - 2x}}}}) \\
{\text{ = }}\dfrac{{({e^{2x}} + {e^{ - 2x}})\dfrac{d}{{dx}}2 - 2\dfrac{d}{{dx}}({e^{2x}} + {e^{ - 2x}})}}{{{{({e^{2x}} + {e^{ - 2x}})}^2}}} \\
{\text{ = }}\dfrac{{0 - 4({e^{2x}} + {e^{ - 2x}})}}{{{{({e^{2x}} + {e^{ - 2x}})}^2}}} \\
{\text{ = }} - 4\dfrac{1}{{({e^{2x}} + {e^{ - 2x}})}}.\dfrac{{({e^{2x}} - {e^{ - 2x}})}}{{({e^{2x}} + {e^{ - 2x}})}} \\
{\text{ = }} - 4\sec h2x.\tan h2x \\
$
Note: Whenever you get this type of question the key concept to solve is that use the hyperbolic functions $\sin hkx = \dfrac{{{e^{kx}} - {e^{ - kx}}}}{2}$and $\cos hkx = \dfrac{{{e^{kx}} + {e^{ - kx}}}}{2}$ to get other relations by just applying simple operations like dividing, adding etc. Remember one thing that hyperbolic functions are different from trigonometric functions.
Complete Step-by-Step solution:
Hyperbolic functions
$
\Rightarrow \sin hkx = \dfrac{{{e^{kx}} - {e^{ - kx}}}}{2}{\text{ eq}}{\text{.1}} \\
\Rightarrow \cos hkx = \dfrac{{{e^{kx}} + {e^{ - kx}}}}{2}{\text{ eq}}{\text{.2}} \\
$
Differentiation of $\dfrac{u}{v}$ w.r.t. to$x$
$ \Rightarrow \dfrac{d}{{dx}}\dfrac{u}{v} = \dfrac{{\dfrac{{vdu}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}{\text{ eq}}{\text{.3}}$
${\text{(a) tan}}h4x$
Divide eq.1 and eq.2, we get
$ \Rightarrow \tanh kx{\text{ }} = {\text{ }}\dfrac{{{e^{kx}} - {e^{ - kx}}}}{{{e^{kx}} + {e^{ - kx}}}}$
Put h=4 in above equation we get
$ \Rightarrow \tan 4kx{\text{ }} = {\text{ }}\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}}{\text{ eq}}{\text{.4}}$
Differentiate eq.4 w.r.t to $x$using formula of eq,3
$$$$$
\Rightarrow \dfrac{{d\tan h4x}}{{dx}} = {\text{ }}\dfrac{d}{{dx}}(\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}}) \\
{\text{ = }}\dfrac{{({e^{4x}} + {e^{ - 4x}})\dfrac{d}{{dx}}({e^{4x}} - {e^{ - 4x}}) - ({e^{4x}} - {e^{ - 4x}})\dfrac{d}{{dx}}({e^{4x}} + {e^{ - 4x}})}}{{{{({e^{4x}} + {e^{ - 4x}})}^2}}} \\
{\text{ = }}\dfrac{{4{{({e^{4x}} + {e^{ - 4x}})}^2} - 4{{({e^{4x}} - {e^{ - 4x}})}^2}}}{{{{({e^{4x}} + {e^{ - 4x}})}^2}}} \\
{\text{ = 4\{ 1}} - {{\text{(}}\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}})^2}\} \\
{\text{ = 4(1}} - \tan {h^2}4x) \\
$
${\text{(b) sec}}h2x$
We know that $\sec h4x = \dfrac{1}{{\cos h4x}}$
$ \Rightarrow \sec h4x = \dfrac{2}{{{e^{kx}} + {e^{ - kx}}}}$ eq.5
Differentiation eq. 4 w.r.t to $x$using formula of eq,3
$
\Rightarrow \dfrac{d}{{dx}}\sec h2x = \dfrac{d}{{dx}}(\dfrac{2}{{{e^{2x}} + {e^{ - 2x}}}}) \\
{\text{ = }}\dfrac{{({e^{2x}} + {e^{ - 2x}})\dfrac{d}{{dx}}2 - 2\dfrac{d}{{dx}}({e^{2x}} + {e^{ - 2x}})}}{{{{({e^{2x}} + {e^{ - 2x}})}^2}}} \\
{\text{ = }}\dfrac{{0 - 4({e^{2x}} + {e^{ - 2x}})}}{{{{({e^{2x}} + {e^{ - 2x}})}^2}}} \\
{\text{ = }} - 4\dfrac{1}{{({e^{2x}} + {e^{ - 2x}})}}.\dfrac{{({e^{2x}} - {e^{ - 2x}})}}{{({e^{2x}} + {e^{ - 2x}})}} \\
{\text{ = }} - 4\sec h2x.\tan h2x \\
$
Note: Whenever you get this type of question the key concept to solve is that use the hyperbolic functions $\sin hkx = \dfrac{{{e^{kx}} - {e^{ - kx}}}}{2}$and $\cos hkx = \dfrac{{{e^{kx}} + {e^{ - kx}}}}{2}$ to get other relations by just applying simple operations like dividing, adding etc. Remember one thing that hyperbolic functions are different from trigonometric functions.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

