
Differentiate with respect to $x$:
$
{\text{(a) tan}}h4x \\
{\text{(b) sec}}h2x \\
$
Answer
517.2k+ views
Hint: In this question first we have to find hyperbolic functions ${\text{tan}}h4x$ and ${\text{sec}}h2x$ in terms of ${e^{kx}}$ by using relations $\sin hkx = \dfrac{{{e^{kx}} - {e^{ - kx}}}}{2}$ and $\cos hkx = \dfrac{{{e^{kx}} + {e^{ - kx}}}}{2}$. Then we differentiate ${\text{tan}}h4x$ and ${\text{sec}}h2x$ w.r.t. $x$.
Complete Step-by-Step solution:
Hyperbolic functions
$
\Rightarrow \sin hkx = \dfrac{{{e^{kx}} - {e^{ - kx}}}}{2}{\text{ eq}}{\text{.1}} \\
\Rightarrow \cos hkx = \dfrac{{{e^{kx}} + {e^{ - kx}}}}{2}{\text{ eq}}{\text{.2}} \\
$
Differentiation of $\dfrac{u}{v}$ w.r.t. to$x$
$ \Rightarrow \dfrac{d}{{dx}}\dfrac{u}{v} = \dfrac{{\dfrac{{vdu}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}{\text{ eq}}{\text{.3}}$
${\text{(a) tan}}h4x$
Divide eq.1 and eq.2, we get
$ \Rightarrow \tanh kx{\text{ }} = {\text{ }}\dfrac{{{e^{kx}} - {e^{ - kx}}}}{{{e^{kx}} + {e^{ - kx}}}}$
Put h=4 in above equation we get
$ \Rightarrow \tan 4kx{\text{ }} = {\text{ }}\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}}{\text{ eq}}{\text{.4}}$
Differentiate eq.4 w.r.t to $x$using formula of eq,3
$$$$$
\Rightarrow \dfrac{{d\tan h4x}}{{dx}} = {\text{ }}\dfrac{d}{{dx}}(\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}}) \\
{\text{ = }}\dfrac{{({e^{4x}} + {e^{ - 4x}})\dfrac{d}{{dx}}({e^{4x}} - {e^{ - 4x}}) - ({e^{4x}} - {e^{ - 4x}})\dfrac{d}{{dx}}({e^{4x}} + {e^{ - 4x}})}}{{{{({e^{4x}} + {e^{ - 4x}})}^2}}} \\
{\text{ = }}\dfrac{{4{{({e^{4x}} + {e^{ - 4x}})}^2} - 4{{({e^{4x}} - {e^{ - 4x}})}^2}}}{{{{({e^{4x}} + {e^{ - 4x}})}^2}}} \\
{\text{ = 4\{ 1}} - {{\text{(}}\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}})^2}\} \\
{\text{ = 4(1}} - \tan {h^2}4x) \\
$
${\text{(b) sec}}h2x$
We know that $\sec h4x = \dfrac{1}{{\cos h4x}}$
$ \Rightarrow \sec h4x = \dfrac{2}{{{e^{kx}} + {e^{ - kx}}}}$ eq.5
Differentiation eq. 4 w.r.t to $x$using formula of eq,3
$
\Rightarrow \dfrac{d}{{dx}}\sec h2x = \dfrac{d}{{dx}}(\dfrac{2}{{{e^{2x}} + {e^{ - 2x}}}}) \\
{\text{ = }}\dfrac{{({e^{2x}} + {e^{ - 2x}})\dfrac{d}{{dx}}2 - 2\dfrac{d}{{dx}}({e^{2x}} + {e^{ - 2x}})}}{{{{({e^{2x}} + {e^{ - 2x}})}^2}}} \\
{\text{ = }}\dfrac{{0 - 4({e^{2x}} + {e^{ - 2x}})}}{{{{({e^{2x}} + {e^{ - 2x}})}^2}}} \\
{\text{ = }} - 4\dfrac{1}{{({e^{2x}} + {e^{ - 2x}})}}.\dfrac{{({e^{2x}} - {e^{ - 2x}})}}{{({e^{2x}} + {e^{ - 2x}})}} \\
{\text{ = }} - 4\sec h2x.\tan h2x \\
$
Note: Whenever you get this type of question the key concept to solve is that use the hyperbolic functions $\sin hkx = \dfrac{{{e^{kx}} - {e^{ - kx}}}}{2}$and $\cos hkx = \dfrac{{{e^{kx}} + {e^{ - kx}}}}{2}$ to get other relations by just applying simple operations like dividing, adding etc. Remember one thing that hyperbolic functions are different from trigonometric functions.
Complete Step-by-Step solution:
Hyperbolic functions
$
\Rightarrow \sin hkx = \dfrac{{{e^{kx}} - {e^{ - kx}}}}{2}{\text{ eq}}{\text{.1}} \\
\Rightarrow \cos hkx = \dfrac{{{e^{kx}} + {e^{ - kx}}}}{2}{\text{ eq}}{\text{.2}} \\
$
Differentiation of $\dfrac{u}{v}$ w.r.t. to$x$
$ \Rightarrow \dfrac{d}{{dx}}\dfrac{u}{v} = \dfrac{{\dfrac{{vdu}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}{\text{ eq}}{\text{.3}}$
${\text{(a) tan}}h4x$
Divide eq.1 and eq.2, we get
$ \Rightarrow \tanh kx{\text{ }} = {\text{ }}\dfrac{{{e^{kx}} - {e^{ - kx}}}}{{{e^{kx}} + {e^{ - kx}}}}$
Put h=4 in above equation we get
$ \Rightarrow \tan 4kx{\text{ }} = {\text{ }}\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}}{\text{ eq}}{\text{.4}}$
Differentiate eq.4 w.r.t to $x$using formula of eq,3
$$$$$
\Rightarrow \dfrac{{d\tan h4x}}{{dx}} = {\text{ }}\dfrac{d}{{dx}}(\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}}) \\
{\text{ = }}\dfrac{{({e^{4x}} + {e^{ - 4x}})\dfrac{d}{{dx}}({e^{4x}} - {e^{ - 4x}}) - ({e^{4x}} - {e^{ - 4x}})\dfrac{d}{{dx}}({e^{4x}} + {e^{ - 4x}})}}{{{{({e^{4x}} + {e^{ - 4x}})}^2}}} \\
{\text{ = }}\dfrac{{4{{({e^{4x}} + {e^{ - 4x}})}^2} - 4{{({e^{4x}} - {e^{ - 4x}})}^2}}}{{{{({e^{4x}} + {e^{ - 4x}})}^2}}} \\
{\text{ = 4\{ 1}} - {{\text{(}}\dfrac{{{e^{4x}} - {e^{ - 4x}}}}{{{e^{4x}} + {e^{ - 4x}}}})^2}\} \\
{\text{ = 4(1}} - \tan {h^2}4x) \\
$
${\text{(b) sec}}h2x$
We know that $\sec h4x = \dfrac{1}{{\cos h4x}}$
$ \Rightarrow \sec h4x = \dfrac{2}{{{e^{kx}} + {e^{ - kx}}}}$ eq.5
Differentiation eq. 4 w.r.t to $x$using formula of eq,3
$
\Rightarrow \dfrac{d}{{dx}}\sec h2x = \dfrac{d}{{dx}}(\dfrac{2}{{{e^{2x}} + {e^{ - 2x}}}}) \\
{\text{ = }}\dfrac{{({e^{2x}} + {e^{ - 2x}})\dfrac{d}{{dx}}2 - 2\dfrac{d}{{dx}}({e^{2x}} + {e^{ - 2x}})}}{{{{({e^{2x}} + {e^{ - 2x}})}^2}}} \\
{\text{ = }}\dfrac{{0 - 4({e^{2x}} + {e^{ - 2x}})}}{{{{({e^{2x}} + {e^{ - 2x}})}^2}}} \\
{\text{ = }} - 4\dfrac{1}{{({e^{2x}} + {e^{ - 2x}})}}.\dfrac{{({e^{2x}} - {e^{ - 2x}})}}{{({e^{2x}} + {e^{ - 2x}})}} \\
{\text{ = }} - 4\sec h2x.\tan h2x \\
$
Note: Whenever you get this type of question the key concept to solve is that use the hyperbolic functions $\sin hkx = \dfrac{{{e^{kx}} - {e^{ - kx}}}}{2}$and $\cos hkx = \dfrac{{{e^{kx}} + {e^{ - kx}}}}{2}$ to get other relations by just applying simple operations like dividing, adding etc. Remember one thing that hyperbolic functions are different from trigonometric functions.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
