
Differentiate ${{\left( \log x \right)}^{x}}$ with respect to $\log x$ and obtain the answer.
Answer
603.6k+ views
Hint: In this question, the function is the power of the $\log x$ function of x. Therefore, in this case, we can use the chain rule by defining suitable variables and then simplify it to obtain the required answer.
Complete step-by-step answer:
In the question, we have to differentiate ${{\left( \log x \right)}^{x}}$ with respect to $\log x$ i.e. we have to find $\dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}$.
Now, we know that if u and v are two functions of x, then
$\dfrac{du}{dv}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}..............(1.1)$
Therefore, taking $u={{\left( \log x \right)}^{x}}$ and $v=\log x$ in equation (1.1), we obtain
$\dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=\dfrac{\dfrac{d{{\left( \log x \right)}^{x}}}{dx}}{\dfrac{d\left( \log x \right)}{dx}}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}................(1.2)$
We know that for any numbers a and b
$\log \left( {{a}^{b}} \right)=b\log \left( a \right)..............(1.2)$
Now, we have defined $u$ as $u={{\left( \log x \right)}^{x}}$. Taking logarithm on both sides and using equation (1.2), we obtain
$\log u=\log \left( {{\left( \log x \right)}^{x}} \right)=x\log \left( \log x \right).....(1.3)$
Now, the derivative of log function is given by
$\dfrac{d\log x}{dx}=\dfrac{1}{x}..............(1.4)$
The chain rules is stated as
$\dfrac{d\left( f(g(x)) \right)}{dx}=\dfrac{df(g)}{dg}\times \dfrac{dg(x)}{dx}........(1.5)$
And the derivative of the product of two functions is given by
$\dfrac{d\left( f(x)g(x) \right)}{dx}=g(x)\dfrac{df(x)}{dx}+f(x)\dfrac{dg(x)}{dx}...........(1.6)$
Therefore, differentiating both sides of equation (1.3) and using equations (1.4), (1.5) and (1.6), we get
\[\begin{align}
& \log u=x\log \left( \log x \right) \\
& \Rightarrow \dfrac{d\log u}{dx}=\dfrac{d\left( x\log \left( \log x \right) \right)}{dx} \\
& \Rightarrow \dfrac{d\log u}{du}\dfrac{du}{dx}=\log \left( \log x \right)\dfrac{d\left( x
\right)}{dx}+x\dfrac{d\left( \log \left( \log x \right) \right)}{dx} \\
& \Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\log \left( \log x \right)\times 1+x\times
\dfrac{d\left( \log \left( \log x \right) \right)}{d\log x}\dfrac{d\log x}{dx} \\
& \Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\log \left( \log x \right)+x\times \dfrac{1}{\log x}\times \dfrac{1}{x} \\
& \Rightarrow \dfrac{du}{dx}=u\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right)={{\left(
\log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right).....(1.7) \\
\end{align}\]
Similarly, in the denominator, we can use equation (1.4) to obtain
$\dfrac{dv}{dx}=\dfrac{d\log x}{dx}=\dfrac{1}{x}..............(1.8)$
Therefore, from equations (1.2), (1.7) and (1.8), we obtain
$\begin{align}
& \dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}=\dfrac{{{\left( \log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right)}{\dfrac{1}{x}} \\
& \Rightarrow \dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=x{{\left( \log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right) \\
\end{align}$
Which is the required answer to this question.
Note: In this case, we should note that we should simply take $\log x$ as a constant and use the derivative of the xth power of a constant as $\dfrac{d\left( {{a}^{x}} \right)}{dx}={{a}^{x}}\log a$ because in this formula a is a constant whereas in the question $\log x$ is not a constant but is a function of x.
Complete step-by-step answer:
In the question, we have to differentiate ${{\left( \log x \right)}^{x}}$ with respect to $\log x$ i.e. we have to find $\dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}$.
Now, we know that if u and v are two functions of x, then
$\dfrac{du}{dv}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}..............(1.1)$
Therefore, taking $u={{\left( \log x \right)}^{x}}$ and $v=\log x$ in equation (1.1), we obtain
$\dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=\dfrac{\dfrac{d{{\left( \log x \right)}^{x}}}{dx}}{\dfrac{d\left( \log x \right)}{dx}}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}................(1.2)$
We know that for any numbers a and b
$\log \left( {{a}^{b}} \right)=b\log \left( a \right)..............(1.2)$
Now, we have defined $u$ as $u={{\left( \log x \right)}^{x}}$. Taking logarithm on both sides and using equation (1.2), we obtain
$\log u=\log \left( {{\left( \log x \right)}^{x}} \right)=x\log \left( \log x \right).....(1.3)$
Now, the derivative of log function is given by
$\dfrac{d\log x}{dx}=\dfrac{1}{x}..............(1.4)$
The chain rules is stated as
$\dfrac{d\left( f(g(x)) \right)}{dx}=\dfrac{df(g)}{dg}\times \dfrac{dg(x)}{dx}........(1.5)$
And the derivative of the product of two functions is given by
$\dfrac{d\left( f(x)g(x) \right)}{dx}=g(x)\dfrac{df(x)}{dx}+f(x)\dfrac{dg(x)}{dx}...........(1.6)$
Therefore, differentiating both sides of equation (1.3) and using equations (1.4), (1.5) and (1.6), we get
\[\begin{align}
& \log u=x\log \left( \log x \right) \\
& \Rightarrow \dfrac{d\log u}{dx}=\dfrac{d\left( x\log \left( \log x \right) \right)}{dx} \\
& \Rightarrow \dfrac{d\log u}{du}\dfrac{du}{dx}=\log \left( \log x \right)\dfrac{d\left( x
\right)}{dx}+x\dfrac{d\left( \log \left( \log x \right) \right)}{dx} \\
& \Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\log \left( \log x \right)\times 1+x\times
\dfrac{d\left( \log \left( \log x \right) \right)}{d\log x}\dfrac{d\log x}{dx} \\
& \Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\log \left( \log x \right)+x\times \dfrac{1}{\log x}\times \dfrac{1}{x} \\
& \Rightarrow \dfrac{du}{dx}=u\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right)={{\left(
\log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right).....(1.7) \\
\end{align}\]
Similarly, in the denominator, we can use equation (1.4) to obtain
$\dfrac{dv}{dx}=\dfrac{d\log x}{dx}=\dfrac{1}{x}..............(1.8)$
Therefore, from equations (1.2), (1.7) and (1.8), we obtain
$\begin{align}
& \dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}=\dfrac{{{\left( \log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right)}{\dfrac{1}{x}} \\
& \Rightarrow \dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=x{{\left( \log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right) \\
\end{align}$
Which is the required answer to this question.
Note: In this case, we should note that we should simply take $\log x$ as a constant and use the derivative of the xth power of a constant as $\dfrac{d\left( {{a}^{x}} \right)}{dx}={{a}^{x}}\log a$ because in this formula a is a constant whereas in the question $\log x$ is not a constant but is a function of x.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

What are luminous and Non luminous objects class 10 physics CBSE

A Paragraph on Pollution in about 100-150 Words

