Answer

Verified

402.3k+ views

**Hint:**We are given a trapezium whose diagonals intersect at a point and as we know that the trapezium has two parallel sides and the measurement of one side is thrice the other. We have to find the ratio of the areas of the triangle formed by diagonals. We will use the concept of similarity of triangle first we will prove the two triangles similar in that we also use the concept of alternate angles as we are having the pair of parallel lines alternate angles are angles that are in opposite position relative to a transversal intersecting two lines after proving the similarity by AA, SAS, SSS criterion we will use the theorem of the area of triangles if two triangles are similar then the ratio of the area of both triangles is proportional to the square of the ratio of their corresponding sides this proves that the ratio of the area of two similar triangles is proportional to the square of the corresponding sides of both the triangles

**Complete step by step answer:**

Step1: We are given a trapezium $PORS$ in which $PQ$ is parallel to $RS$ and $PQ$=$3RS$.

Here we will draw the trapezium. The diagonals of trapezium intersect at 0. To find the ratio of the area of triangles $POQ$ and $ROS$, first we will prove the similarity between the triangles POQ and ROS.

Step2: In $\vartriangle POQ$ and $\vartriangle ROS$

$\angle SOR = \angle QOP$ (Vertically opposite angles)

$\angle SRP = \angle RPQ$ (Alternate angles)

$\vartriangle POQ \sim \vartriangle ROS$ (By AAA similarity criterion)

Step3: Now by using the property of the area of similar triangles we will find the ratio of the area of two similar triangles which states the ratio of the area of two similar triangles is proportional to the square of the corresponding sides of both the triangles.

$\Rightarrow \dfrac{{ar(\vartriangle POQ)}}{{ar(\vartriangle SOR)}} = \dfrac{{{{(PQ)}^2}}}{{{{(RS)}^2}}} = {\left( {\dfrac{{PQ}}{{RS}}} \right)^2}$………………….(1)

As it is given $PQ = 3RS$

$\Rightarrow \dfrac{{PQ}}{{RS}} = \dfrac{3}{1}$

Step4: Substituting the value in equation (1) we get

$\Rightarrow \dfrac{{ar(\vartriangle POQ)}}{{ar(\vartriangle SOR)}} = {\left( {\dfrac{3}{1}} \right)^2}$

$\Rightarrow \dfrac{{ar(\vartriangle POQ)}}{{ar(\vartriangle SOR)}} = \dfrac{9}{1}$

**Hence the ratio of the area of $\vartriangle POQ$ and $ \vartriangle ROS$ is $9:1$**

**Note:**

In such types of questions students mainly get confused or even don’t know which concept they have to apply. They sometimes use the concept of congruence which is wrong they should be kept in mind if they have to solve anything for the ratio of the area of the triangle then they have to simply use the property of the ratio of the area of similar triangles

Commit to memory: Theorem of the ratio of the area of similar triangles

Recently Updated Pages

The base of a right prism is a pentagon whose sides class 10 maths CBSE

A die is thrown Find the probability that the number class 10 maths CBSE

A mans age is six times the age of his son In six years class 10 maths CBSE

A started a business with Rs 21000 and is joined afterwards class 10 maths CBSE

Aasifbhai bought a refrigerator at Rs 10000 After some class 10 maths CBSE

Give a brief history of the mathematician Pythagoras class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE