Answer
Verified
409.5k+ views
Hint: From the question given, we have been asked to find \[\sin \theta \] and given \[\cos \theta =-\dfrac{2}{3},{{90}^{0}} < \theta < {{180}^{0}}\]. We can solve the given question by knowing the basic formulae and basic principles of trigonometry. By using them we can solve the given question very easily.
Complete step by step answer:
Now considering from the question we have to determine the value of \[\sin \theta \] when \[\cos \theta =-\dfrac{2}{3}\] in the interval \[{{90}^{0}} < \theta < {{180}^{0}}\]
First of all, we have to explain about the interval given in the question.
The interval given in the question is \[{{90}^{0}} < \theta < {{180}^{0}}\]
By the basic principles of trigonometry, we can say that the given interval indicates the second quadrant.
We know that in second quadrant sine angle is positive \[\sin \theta >0\]
In trigonometry, we have one basic identity that is shown below: \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
By using the above basic trigonometric identity, we have to solve the given question.
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Shift \[{{\cos }^{2}}\theta \] to the right hand side of the equation from the left hand side of the equation.
By shifting \[{{\cos }^{2}}\theta \] from the left hand side of the equation to the right hand side of the equation, we get
\[\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
From the question, it has been already given that \[\cos \theta =-\dfrac{2}{3},\] substitute it in the above identity.
By substituting, we get \[\Rightarrow {{\sin }^{2}}\theta =1-{{\left( -\dfrac{2}{3} \right)}^{2}}\]
Simplify further to get an accurate and exact answer.
By simplifying further, we get
\[\Rightarrow {{\sin }^{2}}\theta =1-\dfrac{4}{9}\]
\[\Rightarrow {{\sin }^{2}}\theta =\dfrac{5}{9}\]
\[\Rightarrow \sin \theta =\pm \dfrac{\sqrt{5}}{3}\]
As we have already discussed earlier, in the second quadrant sine is positive.
\[\sin \theta =\dfrac{\sqrt{5}}{3}\]
Hence, we determined the value of \[\sin \theta \].
Note: We should be well known about the basic identities and principles of trigonometry. We should not neglect the interval given in the question. Using the interval given, we have to find the answer. Also, we should be very careful while doing the calculation part. Similarly we can determine the values of all other trigonometric ratios using one the value of one trigonometric ratio. Like here in this case we can determine the value of all trigonometric ratios as follows \[\sin \theta =\dfrac{\sqrt{5}}{3}\] , $\csc \theta =\dfrac{1}{\sin \theta }=\dfrac{3}{\sqrt{5}}$ , $\sec \theta =\dfrac{1}{\cos \theta }=\dfrac{-3}{2}$ , $\tan \theta =\dfrac{\sin \theta }{\cos \theta }\Rightarrow \dfrac{\left( \dfrac{\sqrt{5}}{3} \right)}{\left( \dfrac{-2}{3} \right)}=\dfrac{-\sqrt{5}}{2}$ and $\cot \theta =\dfrac{1}{\tan \theta }=\dfrac{-2}{\sqrt{5}}$ for given \[\cos \theta =-\dfrac{2}{3}\] in the interval \[{{90}^{0}} < \theta < {{180}^{0}}\] .
Complete step by step answer:
Now considering from the question we have to determine the value of \[\sin \theta \] when \[\cos \theta =-\dfrac{2}{3}\] in the interval \[{{90}^{0}} < \theta < {{180}^{0}}\]
First of all, we have to explain about the interval given in the question.
The interval given in the question is \[{{90}^{0}} < \theta < {{180}^{0}}\]
By the basic principles of trigonometry, we can say that the given interval indicates the second quadrant.
We know that in second quadrant sine angle is positive \[\sin \theta >0\]
In trigonometry, we have one basic identity that is shown below: \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
By using the above basic trigonometric identity, we have to solve the given question.
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Shift \[{{\cos }^{2}}\theta \] to the right hand side of the equation from the left hand side of the equation.
By shifting \[{{\cos }^{2}}\theta \] from the left hand side of the equation to the right hand side of the equation, we get
\[\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
From the question, it has been already given that \[\cos \theta =-\dfrac{2}{3},\] substitute it in the above identity.
By substituting, we get \[\Rightarrow {{\sin }^{2}}\theta =1-{{\left( -\dfrac{2}{3} \right)}^{2}}\]
Simplify further to get an accurate and exact answer.
By simplifying further, we get
\[\Rightarrow {{\sin }^{2}}\theta =1-\dfrac{4}{9}\]
\[\Rightarrow {{\sin }^{2}}\theta =\dfrac{5}{9}\]
\[\Rightarrow \sin \theta =\pm \dfrac{\sqrt{5}}{3}\]
As we have already discussed earlier, in the second quadrant sine is positive.
\[\sin \theta =\dfrac{\sqrt{5}}{3}\]
Hence, we determined the value of \[\sin \theta \].
Note: We should be well known about the basic identities and principles of trigonometry. We should not neglect the interval given in the question. Using the interval given, we have to find the answer. Also, we should be very careful while doing the calculation part. Similarly we can determine the values of all other trigonometric ratios using one the value of one trigonometric ratio. Like here in this case we can determine the value of all trigonometric ratios as follows \[\sin \theta =\dfrac{\sqrt{5}}{3}\] , $\csc \theta =\dfrac{1}{\sin \theta }=\dfrac{3}{\sqrt{5}}$ , $\sec \theta =\dfrac{1}{\cos \theta }=\dfrac{-3}{2}$ , $\tan \theta =\dfrac{\sin \theta }{\cos \theta }\Rightarrow \dfrac{\left( \dfrac{\sqrt{5}}{3} \right)}{\left( \dfrac{-2}{3} \right)}=\dfrac{-\sqrt{5}}{2}$ and $\cot \theta =\dfrac{1}{\tan \theta }=\dfrac{-2}{\sqrt{5}}$ for given \[\cos \theta =-\dfrac{2}{3}\] in the interval \[{{90}^{0}} < \theta < {{180}^{0}}\] .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell