Answer
Verified
423.6k+ views
Hint: To discuss the required result. We first convert or write all given set in Roster form if any of one is given in set builder form and then after that we see that if all elements of one set is contained in another set then the set will be a sub set.
Complete step-by-step answer:
To find the required solution of the given problem. We first write given set in Roster form which is as follows:
For option (A) we have:
$ A = \left\{ {x:x \in R\,\,and\,\,satisfy\,\,{x^2} - 8x + 12 = 0} \right\} $
Clearly the above set is not in a Roster form. Therefore, we will solve the quadratic equation to find its roots.
We can find roots of given quadratic by middle term splitting method:
We have,
\[
{x^2} - 8x + 12 = 0 \\
\Rightarrow {x^2} - \left( {6 + 2} \right)x + 12 = 0 \\
\Rightarrow {x^2} - 6x - 2x + 12 = 0 \\
\Rightarrow x\left( {x - 6} \right) - 2\left( {x - 6} \right) = 0 \\
\Rightarrow \left( {x - 6} \right)\left( {x - 2} \right) = 0 \\
x - 6 = 0\,\,or\,\,x - 2 = 0 \\
x = 6\,\,\,or\,\,\,x = 2 \\
\]
Therefore, using above we have
\[{\text{A = \{ 2,6\} }}\]
And all other sets are already given in Roster form.
Therefore, from above we see elements in $ A = \left\{ {2,6} \right\} $ and $ B = \left\{ {2,4,6} \right\} $ .
Since all elements of set A belong to set B.
Therefore, we can say that set ‘A’ is a subset of set ‘B’ or we write it as $ A \subseteq C $ .
Also, from above we see that elements of ‘A’ and ‘C’ are given as: $ A = \left\{ {2,6} \right\} $ and $ C = \left\{ {2,4,6,8.......} \right\} $ .
Clearly all elements of set ‘A’ belong to set ‘C’. Hence, we can say that set ‘A’ is a subset of set ‘C’ and we write it as: $ A \subseteq C $
Also, elements of set ‘B’ and set ‘C’ are given as \[{\text{B = \{ 2,4,6\} }}\]and \[{\text{C = \{ 2,4,6,8}}...{\text{\} }}\].
Clearly we see that all elements of set B belongs to set C. Hence we can say that set ‘B’ is a subset of ‘C’ and we write it as: $ B \subseteq C $
Also, from above we see that elements of set ‘D’ and elements of set ‘A’ are given as $ D = \left\{ 6 \right\} $ and $ A = \left\{ {2,6} \right\} $ .
Clearly we see that all elements of set ‘D’ belong to set ‘A’. Hence, we can say that set ‘D’ is a subset of set ‘A’ and we write it as: $ D \subseteq A $
Also, from above we see that element of set ‘D’ and set ‘B’ are given as $ D = \left\{ 6 \right\} $ and $ B = \left\{ {2,4,6} \right\} $ .
Clearly we see that all elements of set ‘D’ belong to set ‘B’. Hence, we can say that set ‘D’ is a subset of set ‘B’ and we write it as: $ D \subseteq B $
Also, from above we see that elements of set ‘D’ and set ‘C’ are given as $ D = \left\{ 6 \right\} $ and $ C = \left\{ {2,4,6,.....} \right\} $ .
Clearly we see that all elements of set ‘D’ belong to set ‘C’. Hence, we can say that set ‘D’ is a subset of set ‘C’ and we write it as: $ D \subseteq C $
Hence, from above we see that set ‘D’ is a subset of set ‘A’, set ‘B’ and set ‘C’. Also, set ‘A’ is a subset of set ‘B’ and set ‘C’ and set ‘B’ is a subset of set ‘C’.
Note: One set is called a subset if all its elements belong to another set, if even only one element doesn't belong to another, then it will not be considered as a subset. Hence, to discuss whether a set is a subset or not. First express given sets in Roster form if sets are given in Builder form as doing problems in builder form students may make mistakes in considering elements of the given set.
Complete step-by-step answer:
To find the required solution of the given problem. We first write given set in Roster form which is as follows:
For option (A) we have:
$ A = \left\{ {x:x \in R\,\,and\,\,satisfy\,\,{x^2} - 8x + 12 = 0} \right\} $
Clearly the above set is not in a Roster form. Therefore, we will solve the quadratic equation to find its roots.
We can find roots of given quadratic by middle term splitting method:
We have,
\[
{x^2} - 8x + 12 = 0 \\
\Rightarrow {x^2} - \left( {6 + 2} \right)x + 12 = 0 \\
\Rightarrow {x^2} - 6x - 2x + 12 = 0 \\
\Rightarrow x\left( {x - 6} \right) - 2\left( {x - 6} \right) = 0 \\
\Rightarrow \left( {x - 6} \right)\left( {x - 2} \right) = 0 \\
x - 6 = 0\,\,or\,\,x - 2 = 0 \\
x = 6\,\,\,or\,\,\,x = 2 \\
\]
Therefore, using above we have
\[{\text{A = \{ 2,6\} }}\]
And all other sets are already given in Roster form.
Therefore, from above we see elements in $ A = \left\{ {2,6} \right\} $ and $ B = \left\{ {2,4,6} \right\} $ .
Since all elements of set A belong to set B.
Therefore, we can say that set ‘A’ is a subset of set ‘B’ or we write it as $ A \subseteq C $ .
Also, from above we see that elements of ‘A’ and ‘C’ are given as: $ A = \left\{ {2,6} \right\} $ and $ C = \left\{ {2,4,6,8.......} \right\} $ .
Clearly all elements of set ‘A’ belong to set ‘C’. Hence, we can say that set ‘A’ is a subset of set ‘C’ and we write it as: $ A \subseteq C $
Also, elements of set ‘B’ and set ‘C’ are given as \[{\text{B = \{ 2,4,6\} }}\]and \[{\text{C = \{ 2,4,6,8}}...{\text{\} }}\].
Clearly we see that all elements of set B belongs to set C. Hence we can say that set ‘B’ is a subset of ‘C’ and we write it as: $ B \subseteq C $
Also, from above we see that elements of set ‘D’ and elements of set ‘A’ are given as $ D = \left\{ 6 \right\} $ and $ A = \left\{ {2,6} \right\} $ .
Clearly we see that all elements of set ‘D’ belong to set ‘A’. Hence, we can say that set ‘D’ is a subset of set ‘A’ and we write it as: $ D \subseteq A $
Also, from above we see that element of set ‘D’ and set ‘B’ are given as $ D = \left\{ 6 \right\} $ and $ B = \left\{ {2,4,6} \right\} $ .
Clearly we see that all elements of set ‘D’ belong to set ‘B’. Hence, we can say that set ‘D’ is a subset of set ‘B’ and we write it as: $ D \subseteq B $
Also, from above we see that elements of set ‘D’ and set ‘C’ are given as $ D = \left\{ 6 \right\} $ and $ C = \left\{ {2,4,6,.....} \right\} $ .
Clearly we see that all elements of set ‘D’ belong to set ‘C’. Hence, we can say that set ‘D’ is a subset of set ‘C’ and we write it as: $ D \subseteq C $
Hence, from above we see that set ‘D’ is a subset of set ‘A’, set ‘B’ and set ‘C’. Also, set ‘A’ is a subset of set ‘B’ and set ‘C’ and set ‘B’ is a subset of set ‘C’.
Note: One set is called a subset if all its elements belong to another set, if even only one element doesn't belong to another, then it will not be considered as a subset. Hence, to discuss whether a set is a subset or not. First express given sets in Roster form if sets are given in Builder form as doing problems in builder form students may make mistakes in considering elements of the given set.
Watch videos on
Decide, among the following sets, which sets are subsets of one and another.
$
A = \left\{ {x:x \in R\,\,and\,\,x\,\,satisfy\,\,{x^2} - 8x + 12 = 0} \right\} \\
B = \left\{ {2,4,6} \right\} \\
C = \left\{ {2,4,6,8,......} \right\} \\
D = \left\{ 6 \right\} \\
$
$
A = \left\{ {x:x \in R\,\,and\,\,x\,\,satisfy\,\,{x^2} - 8x + 12 = 0} \right\} \\
B = \left\{ {2,4,6} \right\} \\
C = \left\{ {2,4,6,8,......} \right\} \\
D = \left\{ 6 \right\} \\
$
Class 11 MATHS Miscellaneous (Question - 1) | Sets Class 11 Chapter 1| NCERT | Ratan Kalra Sir
Subscribe
Share
likes
21 Views
11 months ago
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE