D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C.
Prove that: $A{E^2} + B{D^2} = A{B^2} + D{E^2}$
Answer
Verified
512.4k+ views
Hint: Apply Pythagoras theorem here while solving.
Pictorial representation of the given problem is shown below.
Two points D and E are on the sides AC and AB.
We have to prove $A{E^2} + B{D^2} = A{B^2} + D{E^2}$
Join the point D with B and E and the point E with A.
Proof: -
Using Pythagoras Theorem,
We know that
${\text{Hypotenuse}}{{\text{e}}^2} = {\text{Perpendicular}}{{\text{r}}^2} + {\text{Bas}}{{\text{e}}^2}$
In $\Delta ACE,$
$A{E^2} = A{C^2} + C{E^2}.........\left( 1 \right)$
In $\Delta BCD,$
$B{D^2} = D{C^2} + B{C^2}.........\left( 2 \right)$
In $\Delta ABC,$
$A{B^2} = A{C^2} + B{C^2}.........\left( 3 \right)$
In $\Delta DCE,$
$D{E^2} = D{C^2} + C{E^2}.........\left( 4 \right)$
Now, consider L.H.S which is$A{E^2} + B{D^2}$
From equation (1) and (2)
$A{E^2} + B{D^2} = A{C^2} + C{E^2} + D{C^2} + B{C^2}.........\left( 5 \right)$
Now, consider R.H.S which is$A{B^2} + D{E^2}$
From equation (3) and (4)
$A{B^2} + D{E^2} = A{C^2} + B{C^2} + D{C^2} + C{E^2}.........\left( 6 \right)$
Now from equation (5) and (6) it is clear that L.H.S = R.H.S
Therefore $A{E^2} + B{D^2} = A{B^2} + D{E^2}$
Hence Proved.
Note:In such types of questions first draw the pictorial representation of the given problem then, apply Pythagoras Theorem in all different right angle triangles which is right angled at C, then find out the value of L.H.S and R.H.S separately, then we see that both are equal which is the required result.
Pictorial representation of the given problem is shown below.
Two points D and E are on the sides AC and AB.
We have to prove $A{E^2} + B{D^2} = A{B^2} + D{E^2}$
Join the point D with B and E and the point E with A.
Proof: -
Using Pythagoras Theorem,
We know that
${\text{Hypotenuse}}{{\text{e}}^2} = {\text{Perpendicular}}{{\text{r}}^2} + {\text{Bas}}{{\text{e}}^2}$
In $\Delta ACE,$
$A{E^2} = A{C^2} + C{E^2}.........\left( 1 \right)$
In $\Delta BCD,$
$B{D^2} = D{C^2} + B{C^2}.........\left( 2 \right)$
In $\Delta ABC,$
$A{B^2} = A{C^2} + B{C^2}.........\left( 3 \right)$
In $\Delta DCE,$
$D{E^2} = D{C^2} + C{E^2}.........\left( 4 \right)$
Now, consider L.H.S which is$A{E^2} + B{D^2}$
From equation (1) and (2)
$A{E^2} + B{D^2} = A{C^2} + C{E^2} + D{C^2} + B{C^2}.........\left( 5 \right)$
Now, consider R.H.S which is$A{B^2} + D{E^2}$
From equation (3) and (4)
$A{B^2} + D{E^2} = A{C^2} + B{C^2} + D{C^2} + C{E^2}.........\left( 6 \right)$
Now from equation (5) and (6) it is clear that L.H.S = R.H.S
Therefore $A{E^2} + B{D^2} = A{B^2} + D{E^2}$
Hence Proved.
Note:In such types of questions first draw the pictorial representation of the given problem then, apply Pythagoras Theorem in all different right angle triangles which is right angled at C, then find out the value of L.H.S and R.H.S separately, then we see that both are equal which is the required result.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE