
Curved surface area of a cone is $308{\text{ c}}{{\text{m}}^2}$ and its slant height is $14{\text{ cm}}$. Find
${\text{(i)}}$ radius of the base
${\text{(ii)}}$ total surface area of the cone.
Answer
609.9k+ views
Hint- Here, we will be using the formulas for curved surface area and total surface area of the cone.
Given, Curved surface area of a cone is ${{\text{A}}_{\text{c}}} = 308{\text{ c}}{{\text{m}}^2}$ and its slant height is $l = 14{\text{ cm}}$
${\text{(i)}}$ Since, the formula for the curved surface of a cone having radius of the base as $r$ and slant height as $l$ is given by ${{\text{A}}_{\text{c}}} = \pi rl$
Using above formula, we can write
${{\text{A}}_{\text{c}}} = \pi rl \Rightarrow 305 = \dfrac{{22}}{7} \times r \times 14 \Rightarrow r = \dfrac{7}{{22 \times 14}} \times 305 \Rightarrow r = 6.93{\text{ cm}}$
Therefore, the radius of the base of the given cone is 6.93 cm.
${\text{(ii)}}$ Also, we know that the formula for the total surface of a cone having radius of the base as $r$ and slant height as $l$ is given by ${{\text{A}}_{\text{s}}} = \pi {r^2} + \pi rl = \pi r\left( {r + l} \right)$
Using the above formula, we get
${{\text{A}}_{\text{s}}} = \pi r\left( {r + l} \right) = \dfrac{{22}}{7} \times 6.93 \times \left( {6.93 + 14} \right) = \dfrac{{22}}{7} \times 6.93 \times 20.93 = 455.85{\text{ c}}{{\text{m}}^2}$
Therefore, the total surface area of the given cone is $455.85{\text{ c}}{{\text{m}}^2}$.
Note- In these types of problems, we have to make sure that all the units of given values are the same. Also, the total surface area of the cone is the sum of its curved surface area (i.e., $\pi rl$) and the area of the base (i.e., $\pi {r^2}$).
Given, Curved surface area of a cone is ${{\text{A}}_{\text{c}}} = 308{\text{ c}}{{\text{m}}^2}$ and its slant height is $l = 14{\text{ cm}}$
${\text{(i)}}$ Since, the formula for the curved surface of a cone having radius of the base as $r$ and slant height as $l$ is given by ${{\text{A}}_{\text{c}}} = \pi rl$
Using above formula, we can write
${{\text{A}}_{\text{c}}} = \pi rl \Rightarrow 305 = \dfrac{{22}}{7} \times r \times 14 \Rightarrow r = \dfrac{7}{{22 \times 14}} \times 305 \Rightarrow r = 6.93{\text{ cm}}$
Therefore, the radius of the base of the given cone is 6.93 cm.
${\text{(ii)}}$ Also, we know that the formula for the total surface of a cone having radius of the base as $r$ and slant height as $l$ is given by ${{\text{A}}_{\text{s}}} = \pi {r^2} + \pi rl = \pi r\left( {r + l} \right)$
Using the above formula, we get
${{\text{A}}_{\text{s}}} = \pi r\left( {r + l} \right) = \dfrac{{22}}{7} \times 6.93 \times \left( {6.93 + 14} \right) = \dfrac{{22}}{7} \times 6.93 \times 20.93 = 455.85{\text{ c}}{{\text{m}}^2}$
Therefore, the total surface area of the given cone is $455.85{\text{ c}}{{\text{m}}^2}$.
Note- In these types of problems, we have to make sure that all the units of given values are the same. Also, the total surface area of the cone is the sum of its curved surface area (i.e., $\pi rl$) and the area of the base (i.e., $\pi {r^2}$).
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

