Answer
Verified
469.5k+ views
Hint- Here, we will be using the formulas for curved surface area and total surface area of the cone.
Given, Curved surface area of a cone is ${{\text{A}}_{\text{c}}} = 308{\text{ c}}{{\text{m}}^2}$ and its slant height is $l = 14{\text{ cm}}$
${\text{(i)}}$ Since, the formula for the curved surface of a cone having radius of the base as $r$ and slant height as $l$ is given by ${{\text{A}}_{\text{c}}} = \pi rl$
Using above formula, we can write
${{\text{A}}_{\text{c}}} = \pi rl \Rightarrow 305 = \dfrac{{22}}{7} \times r \times 14 \Rightarrow r = \dfrac{7}{{22 \times 14}} \times 305 \Rightarrow r = 6.93{\text{ cm}}$
Therefore, the radius of the base of the given cone is 6.93 cm.
${\text{(ii)}}$ Also, we know that the formula for the total surface of a cone having radius of the base as $r$ and slant height as $l$ is given by ${{\text{A}}_{\text{s}}} = \pi {r^2} + \pi rl = \pi r\left( {r + l} \right)$
Using the above formula, we get
${{\text{A}}_{\text{s}}} = \pi r\left( {r + l} \right) = \dfrac{{22}}{7} \times 6.93 \times \left( {6.93 + 14} \right) = \dfrac{{22}}{7} \times 6.93 \times 20.93 = 455.85{\text{ c}}{{\text{m}}^2}$
Therefore, the total surface area of the given cone is $455.85{\text{ c}}{{\text{m}}^2}$.
Note- In these types of problems, we have to make sure that all the units of given values are the same. Also, the total surface area of the cone is the sum of its curved surface area (i.e., $\pi rl$) and the area of the base (i.e., $\pi {r^2}$).
Given, Curved surface area of a cone is ${{\text{A}}_{\text{c}}} = 308{\text{ c}}{{\text{m}}^2}$ and its slant height is $l = 14{\text{ cm}}$
${\text{(i)}}$ Since, the formula for the curved surface of a cone having radius of the base as $r$ and slant height as $l$ is given by ${{\text{A}}_{\text{c}}} = \pi rl$
Using above formula, we can write
${{\text{A}}_{\text{c}}} = \pi rl \Rightarrow 305 = \dfrac{{22}}{7} \times r \times 14 \Rightarrow r = \dfrac{7}{{22 \times 14}} \times 305 \Rightarrow r = 6.93{\text{ cm}}$
Therefore, the radius of the base of the given cone is 6.93 cm.
${\text{(ii)}}$ Also, we know that the formula for the total surface of a cone having radius of the base as $r$ and slant height as $l$ is given by ${{\text{A}}_{\text{s}}} = \pi {r^2} + \pi rl = \pi r\left( {r + l} \right)$
Using the above formula, we get
${{\text{A}}_{\text{s}}} = \pi r\left( {r + l} \right) = \dfrac{{22}}{7} \times 6.93 \times \left( {6.93 + 14} \right) = \dfrac{{22}}{7} \times 6.93 \times 20.93 = 455.85{\text{ c}}{{\text{m}}^2}$
Therefore, the total surface area of the given cone is $455.85{\text{ c}}{{\text{m}}^2}$.
Note- In these types of problems, we have to make sure that all the units of given values are the same. Also, the total surface area of the cone is the sum of its curved surface area (i.e., $\pi rl$) and the area of the base (i.e., $\pi {r^2}$).
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE