Answer
Verified
423.3k+ views
Hint: The measurement of angles can be done in two different units namely radian and degree. In geometry, we measure the angles in degree but also in radians sometimes, similarly in trigonometry, we measure the angle in radians but sometimes in degrees too. So, there are different kinds of units for determining the angle that are, degrees and radians. There is a simple formula to convert a given degree into radians (vice versa). Using that formula, we can find out the correct answer.
Complete step-by-step solution:
The value of \[{180^0}\] is equal to \[\pi \]radians.
Then \[{1^0}\] is equal to \[\dfrac{\pi }{{180}}\] radians.
So the given \[{x^0}\] is equal to \[x \times \dfrac{\pi }{{180}}\] radians.
This is the general formula for converting the angel in degrees to radians.
Now We have, \[{285^0}\].
Using the formula
\[ \Rightarrow {285^0} = 285 \times \dfrac{\pi }{{180}}{\text{ radians}}\]
\[ \Rightarrow \dfrac{{285\pi }}{{180}}\].
To cancel this we find the factors of 285 and 180.
That is, \[285 = 3 \times 5 \times 19\]
\[ \Rightarrow 180 = 2 \times 2 \times 3 \times 3 \times 5\]
Then we have,
\[ \Rightarrow \dfrac{{3 \times 5 \times 19}}{{2 \times 2 \times 3 \times 3 \times 5}}\pi \]
Cancelling we have
\[ \Rightarrow \dfrac{{19\pi }}{{12}}\].
Hence \[{285^0}\] is \[\dfrac{{19\pi }}{{12}}\] rad.
We can put it in the decimal form, that is we know that the value of \[\pi \] is 3.142.
Substituting and simplifying we have,
\[ \Rightarrow \dfrac{{19 \times 3.142}}{{12}}\]
\[ \Rightarrow 4.975\].
Hence \[{285^0}\] is 4.975 rad.
Note: We know that the radian is denoted by ‘rad’. Suppose if they ask us to convert \[\dfrac{{19\pi }}{{12}}\]rad into degree. The value of \[\pi \] radian is equal to \[{180^0}\].
Then 1 rad is equal to \[\dfrac{{180}}{\pi }\] degrees.
So the given \[x\] rad is equal to \[x \times \dfrac{{180}}{\pi }\] degrees.
This is the general formula for converting the angle in radians to degrees.
Then \[\dfrac{{19\pi }}{{12}}\] rad becomes
\[\Rightarrow \dfrac{{19\pi }}{{12}} = \dfrac{{19\pi }}{{12}} \times \dfrac{{180}}{\pi }\] degree
\[ \Rightarrow \dfrac{{19 \times 180}}{{12}}\]
\[ \Rightarrow 19 \times 15\]
\[ \Rightarrow {285^0}\].
Hence \[\dfrac{{19\pi }}{{12}}\]rad is equal to \[{285^0}\] .
Complete step-by-step solution:
The value of \[{180^0}\] is equal to \[\pi \]radians.
Then \[{1^0}\] is equal to \[\dfrac{\pi }{{180}}\] radians.
So the given \[{x^0}\] is equal to \[x \times \dfrac{\pi }{{180}}\] radians.
This is the general formula for converting the angel in degrees to radians.
Now We have, \[{285^0}\].
Using the formula
\[ \Rightarrow {285^0} = 285 \times \dfrac{\pi }{{180}}{\text{ radians}}\]
\[ \Rightarrow \dfrac{{285\pi }}{{180}}\].
To cancel this we find the factors of 285 and 180.
That is, \[285 = 3 \times 5 \times 19\]
\[ \Rightarrow 180 = 2 \times 2 \times 3 \times 3 \times 5\]
Then we have,
\[ \Rightarrow \dfrac{{3 \times 5 \times 19}}{{2 \times 2 \times 3 \times 3 \times 5}}\pi \]
Cancelling we have
\[ \Rightarrow \dfrac{{19\pi }}{{12}}\].
Hence \[{285^0}\] is \[\dfrac{{19\pi }}{{12}}\] rad.
We can put it in the decimal form, that is we know that the value of \[\pi \] is 3.142.
Substituting and simplifying we have,
\[ \Rightarrow \dfrac{{19 \times 3.142}}{{12}}\]
\[ \Rightarrow 4.975\].
Hence \[{285^0}\] is 4.975 rad.
Note: We know that the radian is denoted by ‘rad’. Suppose if they ask us to convert \[\dfrac{{19\pi }}{{12}}\]rad into degree. The value of \[\pi \] radian is equal to \[{180^0}\].
Then 1 rad is equal to \[\dfrac{{180}}{\pi }\] degrees.
So the given \[x\] rad is equal to \[x \times \dfrac{{180}}{\pi }\] degrees.
This is the general formula for converting the angle in radians to degrees.
Then \[\dfrac{{19\pi }}{{12}}\] rad becomes
\[\Rightarrow \dfrac{{19\pi }}{{12}} = \dfrac{{19\pi }}{{12}} \times \dfrac{{180}}{\pi }\] degree
\[ \Rightarrow \dfrac{{19 \times 180}}{{12}}\]
\[ \Rightarrow 19 \times 15\]
\[ \Rightarrow {285^0}\].
Hence \[\dfrac{{19\pi }}{{12}}\]rad is equal to \[{285^0}\] .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE