Answer
Verified
427.8k+ views
Hint: We draw the line segment AB which represents the perimeter of the triangle XYZ, $XY+YZ+ZX=11$. We construct an angle of ${{30}^{\circ }}$on point A and an angle of ${{60}^{\circ }}$ on the point B which we later bisect to meet at point X. We draw the perpendicular bisector AX which intersects AB on Y and the perpendicular bisector BX which intersects AB on Y. We join XY and XZ to have the required triangle XYZ.\[\]
Complete step-by-step solution
We are given two angles of the triangle XYZ that need to be constructed$\angle Y={{30}^{\circ }}$,$\angle Z={{90}^{\circ }}$ and the sum of lengths of the sides $XY+YZ+ZX=11$cm. \[\]
Step-1: We draw a line segment AB of length $XY+YZ+ZX=11$cm using scale. \[\]
Step-2: We construct angle $\angle LAB={{30}^{\circ }}$ on the point A by first constructing ${{60}^{\circ }}$ by taking an arc with the compass and then bisecting the angle of ${{60}^{\circ }}$. We construct angle $\angle MBA={{90}^{\circ }}$by taking the arc of ${{60}^{\circ }}$twice on the point $B$and then bisecting the second arc. \[\]
Step-3: We bisect angle $\angle LAB={{30}^{\circ }}$and $\angle MBA={{90}^{\circ }}$ by taking width of the arc of ${{30}^{\circ }},{{90}^{\circ }}$ and using the compass. We denote the point of intersection of bisecting rays of $\angle LAB,\angle MBA$ as $X$.\[\]
Step-4: We draw the perpendicular bisector of AX and we denote its point of intersection with AB as Y taking the length of AX as an arc using the compass. We similarly draw the perpendicular bisector of BX and denote its point of intersection with AB as Z taking the length of BX as an arc using the compass. \[\]
Step-5: We join the line segment XY and YZ using the scale. \[\]
XYZ is the required constructed triangle. \[\]
Note: We can justify the above construction first observing the triangle AYX where Y lies on the perpendicular bisector of AX which gives us $AY=YX\Rightarrow \angle YAX=\angle YXA=\dfrac{{{30}^{\circ }}}{2}={{15}^{\circ }}$ which implies$\angle AYX={{180}^{\circ }}-\left( \angle YAX+\angle YXA \right)={{150}^{\circ }}\Rightarrow \angle XYZ={{30}^{\circ }}$. Similarly Z lies on the perpendicular bisector of AX which gives us $ZX=ZB\Rightarrow \angle ZBX=\angle ZXB={{45}^{\circ }}$ which implies$\angle XZY={{90}^{\circ }}$. We also have $XY+YZ+ZX=AY+YZ+ZB=11$cm.
Complete step-by-step solution
We are given two angles of the triangle XYZ that need to be constructed$\angle Y={{30}^{\circ }}$,$\angle Z={{90}^{\circ }}$ and the sum of lengths of the sides $XY+YZ+ZX=11$cm. \[\]
Step-1: We draw a line segment AB of length $XY+YZ+ZX=11$cm using scale. \[\]
Step-2: We construct angle $\angle LAB={{30}^{\circ }}$ on the point A by first constructing ${{60}^{\circ }}$ by taking an arc with the compass and then bisecting the angle of ${{60}^{\circ }}$. We construct angle $\angle MBA={{90}^{\circ }}$by taking the arc of ${{60}^{\circ }}$twice on the point $B$and then bisecting the second arc. \[\]
Step-3: We bisect angle $\angle LAB={{30}^{\circ }}$and $\angle MBA={{90}^{\circ }}$ by taking width of the arc of ${{30}^{\circ }},{{90}^{\circ }}$ and using the compass. We denote the point of intersection of bisecting rays of $\angle LAB,\angle MBA$ as $X$.\[\]
Step-4: We draw the perpendicular bisector of AX and we denote its point of intersection with AB as Y taking the length of AX as an arc using the compass. We similarly draw the perpendicular bisector of BX and denote its point of intersection with AB as Z taking the length of BX as an arc using the compass. \[\]
Step-5: We join the line segment XY and YZ using the scale. \[\]
XYZ is the required constructed triangle. \[\]
Note: We can justify the above construction first observing the triangle AYX where Y lies on the perpendicular bisector of AX which gives us $AY=YX\Rightarrow \angle YAX=\angle YXA=\dfrac{{{30}^{\circ }}}{2}={{15}^{\circ }}$ which implies$\angle AYX={{180}^{\circ }}-\left( \angle YAX+\angle YXA \right)={{150}^{\circ }}\Rightarrow \angle XYZ={{30}^{\circ }}$. Similarly Z lies on the perpendicular bisector of AX which gives us $ZX=ZB\Rightarrow \angle ZBX=\angle ZXB={{45}^{\circ }}$ which implies$\angle XZY={{90}^{\circ }}$. We also have $XY+YZ+ZX=AY+YZ+ZB=11$cm.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE