
Construct a triangle XYZ in which $\angle Y={{30}^{\circ }}$,$\angle Z={{90}^{\circ }}$and $XY+YZ+ZX=11$cm \[\]
Answer
545.7k+ views
Hint: We draw the line segment AB which represents the perimeter of the triangle XYZ, $XY+YZ+ZX=11$. We construct an angle of ${{30}^{\circ }}$on point A and an angle of ${{60}^{\circ }}$ on the point B which we later bisect to meet at point X. We draw the perpendicular bisector AX which intersects AB on Y and the perpendicular bisector BX which intersects AB on Y. We join XY and XZ to have the required triangle XYZ.\[\]
Complete step-by-step solution
We are given two angles of the triangle XYZ that need to be constructed$\angle Y={{30}^{\circ }}$,$\angle Z={{90}^{\circ }}$ and the sum of lengths of the sides $XY+YZ+ZX=11$cm. \[\]
Step-1: We draw a line segment AB of length $XY+YZ+ZX=11$cm using scale. \[\]
Step-2: We construct angle $\angle LAB={{30}^{\circ }}$ on the point A by first constructing ${{60}^{\circ }}$ by taking an arc with the compass and then bisecting the angle of ${{60}^{\circ }}$. We construct angle $\angle MBA={{90}^{\circ }}$by taking the arc of ${{60}^{\circ }}$twice on the point $B$and then bisecting the second arc. \[\]
Step-3: We bisect angle $\angle LAB={{30}^{\circ }}$and $\angle MBA={{90}^{\circ }}$ by taking width of the arc of ${{30}^{\circ }},{{90}^{\circ }}$ and using the compass. We denote the point of intersection of bisecting rays of $\angle LAB,\angle MBA$ as $X$.\[\]
Step-4: We draw the perpendicular bisector of AX and we denote its point of intersection with AB as Y taking the length of AX as an arc using the compass. We similarly draw the perpendicular bisector of BX and denote its point of intersection with AB as Z taking the length of BX as an arc using the compass. \[\]
Step-5: We join the line segment XY and YZ using the scale. \[\]
XYZ is the required constructed triangle. \[\]
Note: We can justify the above construction first observing the triangle AYX where Y lies on the perpendicular bisector of AX which gives us $AY=YX\Rightarrow \angle YAX=\angle YXA=\dfrac{{{30}^{\circ }}}{2}={{15}^{\circ }}$ which implies$\angle AYX={{180}^{\circ }}-\left( \angle YAX+\angle YXA \right)={{150}^{\circ }}\Rightarrow \angle XYZ={{30}^{\circ }}$. Similarly Z lies on the perpendicular bisector of AX which gives us $ZX=ZB\Rightarrow \angle ZBX=\angle ZXB={{45}^{\circ }}$ which implies$\angle XZY={{90}^{\circ }}$. We also have $XY+YZ+ZX=AY+YZ+ZB=11$cm.
Complete step-by-step solution
We are given two angles of the triangle XYZ that need to be constructed$\angle Y={{30}^{\circ }}$,$\angle Z={{90}^{\circ }}$ and the sum of lengths of the sides $XY+YZ+ZX=11$cm. \[\]
Step-1: We draw a line segment AB of length $XY+YZ+ZX=11$cm using scale. \[\]
Step-2: We construct angle $\angle LAB={{30}^{\circ }}$ on the point A by first constructing ${{60}^{\circ }}$ by taking an arc with the compass and then bisecting the angle of ${{60}^{\circ }}$. We construct angle $\angle MBA={{90}^{\circ }}$by taking the arc of ${{60}^{\circ }}$twice on the point $B$and then bisecting the second arc. \[\]
Step-3: We bisect angle $\angle LAB={{30}^{\circ }}$and $\angle MBA={{90}^{\circ }}$ by taking width of the arc of ${{30}^{\circ }},{{90}^{\circ }}$ and using the compass. We denote the point of intersection of bisecting rays of $\angle LAB,\angle MBA$ as $X$.\[\]
Step-4: We draw the perpendicular bisector of AX and we denote its point of intersection with AB as Y taking the length of AX as an arc using the compass. We similarly draw the perpendicular bisector of BX and denote its point of intersection with AB as Z taking the length of BX as an arc using the compass. \[\]
Step-5: We join the line segment XY and YZ using the scale. \[\]
XYZ is the required constructed triangle. \[\]
Note: We can justify the above construction first observing the triangle AYX where Y lies on the perpendicular bisector of AX which gives us $AY=YX\Rightarrow \angle YAX=\angle YXA=\dfrac{{{30}^{\circ }}}{2}={{15}^{\circ }}$ which implies$\angle AYX={{180}^{\circ }}-\left( \angle YAX+\angle YXA \right)={{150}^{\circ }}\Rightarrow \angle XYZ={{30}^{\circ }}$. Similarly Z lies on the perpendicular bisector of AX which gives us $ZX=ZB\Rightarrow \angle ZBX=\angle ZXB={{45}^{\circ }}$ which implies$\angle XZY={{90}^{\circ }}$. We also have $XY+YZ+ZX=AY+YZ+ZB=11$cm.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

