
Consider the given function, \[f\left( x \right)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}\] , then \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+......\]
(a) 997
(b) 997.5
(c) 998
(d) 998.5
Answer
576.6k+ views
Hint: We are given that \[f\left( x \right)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3},\] we first have to find the value of f (1 – x) and then check how the function behaves when we add. Then, once we get that f(x) + f(1 – x) = 1. Then we will solve to find the sum of \[f\left( \dfrac{1}{1996} \right)+.......f\left( \dfrac{1995}{1996} \right).\]
Complete step-by-step answer:
We are given that the function f is represented as
\[f\left( x \right)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}\]
We have to find \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+......+f\left( \dfrac{1995}{1996} \right).\] First of all, we will find the value of f(1 – x). Now,
\[f\left( 1-x \right)=\dfrac{{{9}^{1-x}}}{{{9}^{1-x}}+3}\]
We can write \[{{9}^{1-x}}\] as \[\dfrac{9}{{{9}^{x}}}.\] Hence, we get
\[\Rightarrow f\left( 1-x \right)=\dfrac{\dfrac{9}{{{9}^{x}}}}{\dfrac{9}{{{9}^{x}}}+3}\]
Now simplifying the above equation, we get,
\[\Rightarrow f\left( 1-x \right)=\dfrac{9}{9+{{3.9}^{x}}}\]
Taking 3 common from numerator and denominator, we get,
\[\Rightarrow f\left( 1-x \right)=\dfrac{3}{3}\left[ \dfrac{3}{3+{{9}^{x}}} \right]\]
\[\Rightarrow f\left( 1-x \right)=\dfrac{3}{3+{{9}^{x}}}\]
Now, adding f(x) + f(1 – x), we get,
\[f\left( x \right)+f\left( 1-x \right)=\dfrac{{{9}^{x}}}{3+{{9}^{x}}}+\dfrac{3}{3+{{9}^{x}}}\]
\[\Rightarrow f\left( x \right)+f\left( 1-x \right)=\dfrac{{{9}^{x}}+3}{3+{{9}^{x}}}\]
\[\Rightarrow f\left( x \right)+f\left( 1-x \right)=1\]
We get the sum of f(x) and f(1 – x) as 1 for any value of x. So, we get the following terms.
For \[x=\dfrac{1}{1996}\]
\[\Rightarrow 1-x\]
\[\Rightarrow 1-\dfrac{1}{1996}\]
\[\Rightarrow \dfrac{1995}{1996}\]
Since f(x) + f(1 – x) = 1, we get,
\[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)=1\]
Similarly, for \[x=\dfrac{2}{1996},\]
\[\Rightarrow 1-x\]
\[\Rightarrow 1-\dfrac{2}{1996}\]
\[\Rightarrow \dfrac{1994}{1996}\]
So,
\[f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)=1\]
And in the same manner for other terms from 1 to 1995, we have \[\dfrac{1995-1}{2}=997\] pair of f(x) + f(1 – x).
Leaving \[f\left( \dfrac{998}{1996} \right)\] aside. So,
\[\begin{align}
& f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+........+f\left( \dfrac{1994}{1996} \right)+f\left( \dfrac{1995}{1996} \right)= \\
& ++.......+f\left( \dfrac{998}{1996} \right) \\
\end{align}\]
\[=+f\left( \dfrac{998}{1996} \right)\]
\[=997+f\left( \dfrac{998}{1996} \right).....\left( i \right)\]
Now, \[f\left( \dfrac{998}{1996} \right)=f\left( \dfrac{1}{2} \right)\]
As \[f\left( x \right)=\dfrac{{{9}^{x}}}{3+{{9}^{x}}}\] so,
\[f\left( \dfrac{1}{2} \right)=\dfrac{{{9}^{\dfrac{1}{2}}}}{3+{{9}^{\dfrac{1}{2}}}}\]
Since, \[{{9}^{\dfrac{1}{2}}}={{\left( {{3}^{2}} \right)}^{\dfrac{1}{2}}}=3,\] we get,
\[\Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{3}{3+3}\]
\[\Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{1}{2}=0.5.....\left( ii \right)\]
Now using (ii) in (i), we get,
\[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+.......+f\left( \dfrac{1995}{1996} \right)=997+0.5\]
\[\Rightarrow f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+.......+f\left( \dfrac{1995}{1996} \right)=997.5\]
So, the correct answer is “Option B”.
Note: While making a pair, we consider that from 1 to 1995, there are 1995 numbers which is odd, hence one item will be left out. When the denominator is the same for two fractions, the fractions are simply added up by adding their numerator value without solving for LCM.
Complete step-by-step answer:
We are given that the function f is represented as
\[f\left( x \right)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}\]
We have to find \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+......+f\left( \dfrac{1995}{1996} \right).\] First of all, we will find the value of f(1 – x). Now,
\[f\left( 1-x \right)=\dfrac{{{9}^{1-x}}}{{{9}^{1-x}}+3}\]
We can write \[{{9}^{1-x}}\] as \[\dfrac{9}{{{9}^{x}}}.\] Hence, we get
\[\Rightarrow f\left( 1-x \right)=\dfrac{\dfrac{9}{{{9}^{x}}}}{\dfrac{9}{{{9}^{x}}}+3}\]
Now simplifying the above equation, we get,
\[\Rightarrow f\left( 1-x \right)=\dfrac{9}{9+{{3.9}^{x}}}\]
Taking 3 common from numerator and denominator, we get,
\[\Rightarrow f\left( 1-x \right)=\dfrac{3}{3}\left[ \dfrac{3}{3+{{9}^{x}}} \right]\]
\[\Rightarrow f\left( 1-x \right)=\dfrac{3}{3+{{9}^{x}}}\]
Now, adding f(x) + f(1 – x), we get,
\[f\left( x \right)+f\left( 1-x \right)=\dfrac{{{9}^{x}}}{3+{{9}^{x}}}+\dfrac{3}{3+{{9}^{x}}}\]
\[\Rightarrow f\left( x \right)+f\left( 1-x \right)=\dfrac{{{9}^{x}}+3}{3+{{9}^{x}}}\]
\[\Rightarrow f\left( x \right)+f\left( 1-x \right)=1\]
We get the sum of f(x) and f(1 – x) as 1 for any value of x. So, we get the following terms.
For \[x=\dfrac{1}{1996}\]
\[\Rightarrow 1-x\]
\[\Rightarrow 1-\dfrac{1}{1996}\]
\[\Rightarrow \dfrac{1995}{1996}\]
Since f(x) + f(1 – x) = 1, we get,
\[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)=1\]
Similarly, for \[x=\dfrac{2}{1996},\]
\[\Rightarrow 1-x\]
\[\Rightarrow 1-\dfrac{2}{1996}\]
\[\Rightarrow \dfrac{1994}{1996}\]
So,
\[f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)=1\]
And in the same manner for other terms from 1 to 1995, we have \[\dfrac{1995-1}{2}=997\] pair of f(x) + f(1 – x).
Leaving \[f\left( \dfrac{998}{1996} \right)\] aside. So,
\[\begin{align}
& f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+........+f\left( \dfrac{1994}{1996} \right)+f\left( \dfrac{1995}{1996} \right)= \\
& ++.......+f\left( \dfrac{998}{1996} \right) \\
\end{align}\]
\[=+f\left( \dfrac{998}{1996} \right)\]
\[=997+f\left( \dfrac{998}{1996} \right).....\left( i \right)\]
Now, \[f\left( \dfrac{998}{1996} \right)=f\left( \dfrac{1}{2} \right)\]
As \[f\left( x \right)=\dfrac{{{9}^{x}}}{3+{{9}^{x}}}\] so,
\[f\left( \dfrac{1}{2} \right)=\dfrac{{{9}^{\dfrac{1}{2}}}}{3+{{9}^{\dfrac{1}{2}}}}\]
Since, \[{{9}^{\dfrac{1}{2}}}={{\left( {{3}^{2}} \right)}^{\dfrac{1}{2}}}=3,\] we get,
\[\Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{3}{3+3}\]
\[\Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{1}{2}=0.5.....\left( ii \right)\]
Now using (ii) in (i), we get,
\[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+.......+f\left( \dfrac{1995}{1996} \right)=997+0.5\]
\[\Rightarrow f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+.......+f\left( \dfrac{1995}{1996} \right)=997.5\]
So, the correct answer is “Option B”.
Note: While making a pair, we consider that from 1 to 1995, there are 1995 numbers which is odd, hence one item will be left out. When the denominator is the same for two fractions, the fractions are simply added up by adding their numerator value without solving for LCM.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Why is there a time difference of about 5 hours between class 10 social science CBSE

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Which is the largest Gulf in the world A Gulf of Aqaba class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

