Answer
Verified
447.9k+ views
Hint: We are given that \[f\left( x \right)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3},\] we first have to find the value of f (1 – x) and then check how the function behaves when we add. Then, once we get that f(x) + f(1 – x) = 1. Then we will solve to find the sum of \[f\left( \dfrac{1}{1996} \right)+.......f\left( \dfrac{1995}{1996} \right).\]
Complete step-by-step answer:
We are given that the function f is represented as
\[f\left( x \right)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}\]
We have to find \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+......+f\left( \dfrac{1995}{1996} \right).\] First of all, we will find the value of f(1 – x). Now,
\[f\left( 1-x \right)=\dfrac{{{9}^{1-x}}}{{{9}^{1-x}}+3}\]
We can write \[{{9}^{1-x}}\] as \[\dfrac{9}{{{9}^{x}}}.\] Hence, we get
\[\Rightarrow f\left( 1-x \right)=\dfrac{\dfrac{9}{{{9}^{x}}}}{\dfrac{9}{{{9}^{x}}}+3}\]
Now simplifying the above equation, we get,
\[\Rightarrow f\left( 1-x \right)=\dfrac{9}{9+{{3.9}^{x}}}\]
Taking 3 common from numerator and denominator, we get,
\[\Rightarrow f\left( 1-x \right)=\dfrac{3}{3}\left[ \dfrac{3}{3+{{9}^{x}}} \right]\]
\[\Rightarrow f\left( 1-x \right)=\dfrac{3}{3+{{9}^{x}}}\]
Now, adding f(x) + f(1 – x), we get,
\[f\left( x \right)+f\left( 1-x \right)=\dfrac{{{9}^{x}}}{3+{{9}^{x}}}+\dfrac{3}{3+{{9}^{x}}}\]
\[\Rightarrow f\left( x \right)+f\left( 1-x \right)=\dfrac{{{9}^{x}}+3}{3+{{9}^{x}}}\]
\[\Rightarrow f\left( x \right)+f\left( 1-x \right)=1\]
We get the sum of f(x) and f(1 – x) as 1 for any value of x. So, we get the following terms.
For \[x=\dfrac{1}{1996}\]
\[\Rightarrow 1-x\]
\[\Rightarrow 1-\dfrac{1}{1996}\]
\[\Rightarrow \dfrac{1995}{1996}\]
Since f(x) + f(1 – x) = 1, we get,
\[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)=1\]
Similarly, for \[x=\dfrac{2}{1996},\]
\[\Rightarrow 1-x\]
\[\Rightarrow 1-\dfrac{2}{1996}\]
\[\Rightarrow \dfrac{1994}{1996}\]
So,
\[f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)=1\]
And in the same manner for other terms from 1 to 1995, we have \[\dfrac{1995-1}{2}=997\] pair of f(x) + f(1 – x).
Leaving \[f\left( \dfrac{998}{1996} \right)\] aside. So,
\[\begin{align}
& f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+........+f\left( \dfrac{1994}{1996} \right)+f\left( \dfrac{1995}{1996} \right)= \\
& ++.......+f\left( \dfrac{998}{1996} \right) \\
\end{align}\]
\[=+f\left( \dfrac{998}{1996} \right)\]
\[=997+f\left( \dfrac{998}{1996} \right).....\left( i \right)\]
Now, \[f\left( \dfrac{998}{1996} \right)=f\left( \dfrac{1}{2} \right)\]
As \[f\left( x \right)=\dfrac{{{9}^{x}}}{3+{{9}^{x}}}\] so,
\[f\left( \dfrac{1}{2} \right)=\dfrac{{{9}^{\dfrac{1}{2}}}}{3+{{9}^{\dfrac{1}{2}}}}\]
Since, \[{{9}^{\dfrac{1}{2}}}={{\left( {{3}^{2}} \right)}^{\dfrac{1}{2}}}=3,\] we get,
\[\Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{3}{3+3}\]
\[\Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{1}{2}=0.5.....\left( ii \right)\]
Now using (ii) in (i), we get,
\[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+.......+f\left( \dfrac{1995}{1996} \right)=997+0.5\]
\[\Rightarrow f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+.......+f\left( \dfrac{1995}{1996} \right)=997.5\]
So, the correct answer is “Option B”.
Note: While making a pair, we consider that from 1 to 1995, there are 1995 numbers which is odd, hence one item will be left out. When the denominator is the same for two fractions, the fractions are simply added up by adding their numerator value without solving for LCM.
Complete step-by-step answer:
We are given that the function f is represented as
\[f\left( x \right)=\dfrac{{{9}^{x}}}{{{9}^{x}}+3}\]
We have to find \[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+......+f\left( \dfrac{1995}{1996} \right).\] First of all, we will find the value of f(1 – x). Now,
\[f\left( 1-x \right)=\dfrac{{{9}^{1-x}}}{{{9}^{1-x}}+3}\]
We can write \[{{9}^{1-x}}\] as \[\dfrac{9}{{{9}^{x}}}.\] Hence, we get
\[\Rightarrow f\left( 1-x \right)=\dfrac{\dfrac{9}{{{9}^{x}}}}{\dfrac{9}{{{9}^{x}}}+3}\]
Now simplifying the above equation, we get,
\[\Rightarrow f\left( 1-x \right)=\dfrac{9}{9+{{3.9}^{x}}}\]
Taking 3 common from numerator and denominator, we get,
\[\Rightarrow f\left( 1-x \right)=\dfrac{3}{3}\left[ \dfrac{3}{3+{{9}^{x}}} \right]\]
\[\Rightarrow f\left( 1-x \right)=\dfrac{3}{3+{{9}^{x}}}\]
Now, adding f(x) + f(1 – x), we get,
\[f\left( x \right)+f\left( 1-x \right)=\dfrac{{{9}^{x}}}{3+{{9}^{x}}}+\dfrac{3}{3+{{9}^{x}}}\]
\[\Rightarrow f\left( x \right)+f\left( 1-x \right)=\dfrac{{{9}^{x}}+3}{3+{{9}^{x}}}\]
\[\Rightarrow f\left( x \right)+f\left( 1-x \right)=1\]
We get the sum of f(x) and f(1 – x) as 1 for any value of x. So, we get the following terms.
For \[x=\dfrac{1}{1996}\]
\[\Rightarrow 1-x\]
\[\Rightarrow 1-\dfrac{1}{1996}\]
\[\Rightarrow \dfrac{1995}{1996}\]
Since f(x) + f(1 – x) = 1, we get,
\[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{1995}{1996} \right)=1\]
Similarly, for \[x=\dfrac{2}{1996},\]
\[\Rightarrow 1-x\]
\[\Rightarrow 1-\dfrac{2}{1996}\]
\[\Rightarrow \dfrac{1994}{1996}\]
So,
\[f\left( \dfrac{2}{1996} \right)+f\left( \dfrac{1994}{1996} \right)=1\]
And in the same manner for other terms from 1 to 1995, we have \[\dfrac{1995-1}{2}=997\] pair of f(x) + f(1 – x).
Leaving \[f\left( \dfrac{998}{1996} \right)\] aside. So,
\[\begin{align}
& f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+........+f\left( \dfrac{1994}{1996} \right)+f\left( \dfrac{1995}{1996} \right)= \\
& ++.......+f\left( \dfrac{998}{1996} \right) \\
\end{align}\]
\[=+f\left( \dfrac{998}{1996} \right)\]
\[=997+f\left( \dfrac{998}{1996} \right).....\left( i \right)\]
Now, \[f\left( \dfrac{998}{1996} \right)=f\left( \dfrac{1}{2} \right)\]
As \[f\left( x \right)=\dfrac{{{9}^{x}}}{3+{{9}^{x}}}\] so,
\[f\left( \dfrac{1}{2} \right)=\dfrac{{{9}^{\dfrac{1}{2}}}}{3+{{9}^{\dfrac{1}{2}}}}\]
Since, \[{{9}^{\dfrac{1}{2}}}={{\left( {{3}^{2}} \right)}^{\dfrac{1}{2}}}=3,\] we get,
\[\Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{3}{3+3}\]
\[\Rightarrow f\left( \dfrac{1}{2} \right)=\dfrac{1}{2}=0.5.....\left( ii \right)\]
Now using (ii) in (i), we get,
\[f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+.......+f\left( \dfrac{1995}{1996} \right)=997+0.5\]
\[\Rightarrow f\left( \dfrac{1}{1996} \right)+f\left( \dfrac{2}{1996} \right)+.......+f\left( \dfrac{1995}{1996} \right)=997.5\]
So, the correct answer is “Option B”.
Note: While making a pair, we consider that from 1 to 1995, there are 1995 numbers which is odd, hence one item will be left out. When the denominator is the same for two fractions, the fractions are simply added up by adding their numerator value without solving for LCM.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE