
Consider the given expression $i=\sqrt{-1}$ , then the value of the given expression $4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$ is equal to
(a) $1-i\sqrt{3}$
(b) $-1+i\sqrt{3}$
(c) $i\sqrt{3}$
(d) $-i\sqrt{3}$
Answer
597k+ views
Hint: Convert the imaginary number which is in the terms of “i” into an expression in terms of “ $\omega $ ”. And then solve the equation. We know $\omega $ is a root of the equation: ${{x}^{3}}=1$
Finding the value of $\omega $
${{x}^{3}}-1=0..........(A)$
So, we need formula of ${{x}^{n}}-{{y}^{n}}$
Complete step-by-step solution -
We need to prove:
${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+........{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)$
Proof of ${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+...........+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)...........(i)$
By Binomial theorem, we get:
${{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{a}^{k}}{{b}^{n-k}}}$
By general algebraic knowledge, we can write “a” as:
$a=\left[ \left( a-b \right)+b \right]$
Putting this in left hand side of equation (i), we get:
${{a}^{n}}-{{b}^{n}}={{\left[ \left( a-b \right)+b \right]}^{n}}-{{b}^{n}}$
By using binomial theorem in this equation, we get:
${{a}^{n}}-{{b}^{n}}=\left( \sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}-{{b}^{n}}} \right)$
At k = 0 you can see a term ${{b}^{n}}$ in the summation term which gets cancelled by the last term in the equation.
By cancelling the common terms, we get:
${{a}^{n}}-{{b}^{n}}=\left( \sum\limits_{k=1}^{n}{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}} \right)$
Now all terms are divisible by $\left( a-b \right)$
So, here $\left( a-b \right)$ is a common factor.
By taking the term $\left( a-b \right)$ common from expression we get:
${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+...........+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)$
Now if we assume
$a=x,b=1,n=3$
By substituting the above, we get
${{x}^{3}}-1=\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)$
By substituting this into equation (A), we get:
$\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)=0$
The solutions of this equation:
$\begin{align}
& x-1=0 \\
& \Rightarrow x=1 \\
& {{x}^{2}}+x+1=0 \\
\end{align}$
So, ${{x}^{2}}+x+1=0$
We need the solutions of the above expression.
By basic algebraic knowledge we can say:
The solutions of equation:
$a{{x}^{2}}+bx+c=0$ are
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
By using this we know
$a=1,b=1,c=1$
By substituting values of a, b, c into expression we get
$\begin{align}
& x=\dfrac{-1\pm \sqrt{1-4}}{2}=\dfrac{-1\pm \sqrt{-1}\sqrt{3}}{2} \\
& x=\dfrac{-1\pm i\sqrt{3}}{2} \\
\end{align}$
$\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ is named as $\omega $
So, $\omega =\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$
And also ${{\omega }^{3}}=1.............(B)$
By substituting $\omega $ into original expression, we get:
${{\omega }^{2}}+\omega +1=0..............(C)$
By substituting $\omega $ into equation (A) we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{\omega }^{334}}+3{{\omega }^{365}}$
By writing equation in terms of ${{\omega }^{3}}$ , we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{\left( {{\omega }^{3}} \right)}^{111}}+3{{\left( {{\omega }^{3}} \right)}^{121}}{{\omega }^{2}}$
By substituting equation (B) here, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5\omega +3{{\omega }^{2}}$
By breaking terms, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=3+1+3\omega +2\omega +3{{\omega }^{2}}$
By taking “3” common we get:
$\begin{align}
& 4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=1+2\omega +3\left( 1+{{\omega }^{2}}+\omega \right) \\
& =1+2\omega
\end{align}$
By substituting $\omega $ value back, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=1+\left( -1+\sqrt{3}i \right)=\sqrt{3}i$
Therefore, $4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=\sqrt{3}i$
Option (c) is correct.
Note: If in a complex number a + ib, the ratio a : b is $1:\sqrt{3}$ always uses the concept of $\omega $ . Here we can also use the conversion of a given complex number in euler form and then simplifying the Euler form,it would be an easier way to solve this type of question.
Finding the value of $\omega $
${{x}^{3}}-1=0..........(A)$
So, we need formula of ${{x}^{n}}-{{y}^{n}}$
Complete step-by-step solution -
We need to prove:
${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+........{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)$
Proof of ${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+...........+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)...........(i)$
By Binomial theorem, we get:
${{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{a}^{k}}{{b}^{n-k}}}$
By general algebraic knowledge, we can write “a” as:
$a=\left[ \left( a-b \right)+b \right]$
Putting this in left hand side of equation (i), we get:
${{a}^{n}}-{{b}^{n}}={{\left[ \left( a-b \right)+b \right]}^{n}}-{{b}^{n}}$
By using binomial theorem in this equation, we get:
${{a}^{n}}-{{b}^{n}}=\left( \sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}-{{b}^{n}}} \right)$
At k = 0 you can see a term ${{b}^{n}}$ in the summation term which gets cancelled by the last term in the equation.
By cancelling the common terms, we get:
${{a}^{n}}-{{b}^{n}}=\left( \sum\limits_{k=1}^{n}{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}} \right)$
Now all terms are divisible by $\left( a-b \right)$
So, here $\left( a-b \right)$ is a common factor.
By taking the term $\left( a-b \right)$ common from expression we get:
${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+...........+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)$
Now if we assume
$a=x,b=1,n=3$
By substituting the above, we get
${{x}^{3}}-1=\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)$
By substituting this into equation (A), we get:
$\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)=0$
The solutions of this equation:
$\begin{align}
& x-1=0 \\
& \Rightarrow x=1 \\
& {{x}^{2}}+x+1=0 \\
\end{align}$
So, ${{x}^{2}}+x+1=0$
We need the solutions of the above expression.
By basic algebraic knowledge we can say:
The solutions of equation:
$a{{x}^{2}}+bx+c=0$ are
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
By using this we know
$a=1,b=1,c=1$
By substituting values of a, b, c into expression we get
$\begin{align}
& x=\dfrac{-1\pm \sqrt{1-4}}{2}=\dfrac{-1\pm \sqrt{-1}\sqrt{3}}{2} \\
& x=\dfrac{-1\pm i\sqrt{3}}{2} \\
\end{align}$
$\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ is named as $\omega $
So, $\omega =\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$
And also ${{\omega }^{3}}=1.............(B)$
By substituting $\omega $ into original expression, we get:
${{\omega }^{2}}+\omega +1=0..............(C)$
By substituting $\omega $ into equation (A) we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{\omega }^{334}}+3{{\omega }^{365}}$
By writing equation in terms of ${{\omega }^{3}}$ , we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{\left( {{\omega }^{3}} \right)}^{111}}+3{{\left( {{\omega }^{3}} \right)}^{121}}{{\omega }^{2}}$
By substituting equation (B) here, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5\omega +3{{\omega }^{2}}$
By breaking terms, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=3+1+3\omega +2\omega +3{{\omega }^{2}}$
By taking “3” common we get:
$\begin{align}
& 4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=1+2\omega +3\left( 1+{{\omega }^{2}}+\omega \right) \\
& =1+2\omega
\end{align}$
By substituting $\omega $ value back, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=1+\left( -1+\sqrt{3}i \right)=\sqrt{3}i$
Therefore, $4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=\sqrt{3}i$
Option (c) is correct.
Note: If in a complex number a + ib, the ratio a : b is $1:\sqrt{3}$ always uses the concept of $\omega $ . Here we can also use the conversion of a given complex number in euler form and then simplifying the Euler form,it would be an easier way to solve this type of question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

