
Consider the given expression $i=\sqrt{-1}$ , then the value of the given expression $4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}$ is equal to
(a) $1-i\sqrt{3}$
(b) $-1+i\sqrt{3}$
(c) $i\sqrt{3}$
(d) $-i\sqrt{3}$
Answer
612.3k+ views
Hint: Convert the imaginary number which is in the terms of “i” into an expression in terms of “ $\omega $ ”. And then solve the equation. We know $\omega $ is a root of the equation: ${{x}^{3}}=1$
Finding the value of $\omega $
${{x}^{3}}-1=0..........(A)$
So, we need formula of ${{x}^{n}}-{{y}^{n}}$
Complete step-by-step solution -
We need to prove:
${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+........{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)$
Proof of ${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+...........+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)...........(i)$
By Binomial theorem, we get:
${{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{a}^{k}}{{b}^{n-k}}}$
By general algebraic knowledge, we can write “a” as:
$a=\left[ \left( a-b \right)+b \right]$
Putting this in left hand side of equation (i), we get:
${{a}^{n}}-{{b}^{n}}={{\left[ \left( a-b \right)+b \right]}^{n}}-{{b}^{n}}$
By using binomial theorem in this equation, we get:
${{a}^{n}}-{{b}^{n}}=\left( \sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}-{{b}^{n}}} \right)$
At k = 0 you can see a term ${{b}^{n}}$ in the summation term which gets cancelled by the last term in the equation.
By cancelling the common terms, we get:
${{a}^{n}}-{{b}^{n}}=\left( \sum\limits_{k=1}^{n}{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}} \right)$
Now all terms are divisible by $\left( a-b \right)$
So, here $\left( a-b \right)$ is a common factor.
By taking the term $\left( a-b \right)$ common from expression we get:
${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+...........+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)$
Now if we assume
$a=x,b=1,n=3$
By substituting the above, we get
${{x}^{3}}-1=\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)$
By substituting this into equation (A), we get:
$\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)=0$
The solutions of this equation:
$\begin{align}
& x-1=0 \\
& \Rightarrow x=1 \\
& {{x}^{2}}+x+1=0 \\
\end{align}$
So, ${{x}^{2}}+x+1=0$
We need the solutions of the above expression.
By basic algebraic knowledge we can say:
The solutions of equation:
$a{{x}^{2}}+bx+c=0$ are
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
By using this we know
$a=1,b=1,c=1$
By substituting values of a, b, c into expression we get
$\begin{align}
& x=\dfrac{-1\pm \sqrt{1-4}}{2}=\dfrac{-1\pm \sqrt{-1}\sqrt{3}}{2} \\
& x=\dfrac{-1\pm i\sqrt{3}}{2} \\
\end{align}$
$\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ is named as $\omega $
So, $\omega =\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$
And also ${{\omega }^{3}}=1.............(B)$
By substituting $\omega $ into original expression, we get:
${{\omega }^{2}}+\omega +1=0..............(C)$
By substituting $\omega $ into equation (A) we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{\omega }^{334}}+3{{\omega }^{365}}$
By writing equation in terms of ${{\omega }^{3}}$ , we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{\left( {{\omega }^{3}} \right)}^{111}}+3{{\left( {{\omega }^{3}} \right)}^{121}}{{\omega }^{2}}$
By substituting equation (B) here, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5\omega +3{{\omega }^{2}}$
By breaking terms, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=3+1+3\omega +2\omega +3{{\omega }^{2}}$
By taking “3” common we get:
$\begin{align}
& 4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=1+2\omega +3\left( 1+{{\omega }^{2}}+\omega \right) \\
& =1+2\omega
\end{align}$
By substituting $\omega $ value back, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=1+\left( -1+\sqrt{3}i \right)=\sqrt{3}i$
Therefore, $4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=\sqrt{3}i$
Option (c) is correct.
Note: If in a complex number a + ib, the ratio a : b is $1:\sqrt{3}$ always uses the concept of $\omega $ . Here we can also use the conversion of a given complex number in euler form and then simplifying the Euler form,it would be an easier way to solve this type of question.
Finding the value of $\omega $
${{x}^{3}}-1=0..........(A)$
So, we need formula of ${{x}^{n}}-{{y}^{n}}$
Complete step-by-step solution -
We need to prove:
${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+........{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)$
Proof of ${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+...........+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)...........(i)$
By Binomial theorem, we get:
${{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{a}^{k}}{{b}^{n-k}}}$
By general algebraic knowledge, we can write “a” as:
$a=\left[ \left( a-b \right)+b \right]$
Putting this in left hand side of equation (i), we get:
${{a}^{n}}-{{b}^{n}}={{\left[ \left( a-b \right)+b \right]}^{n}}-{{b}^{n}}$
By using binomial theorem in this equation, we get:
${{a}^{n}}-{{b}^{n}}=\left( \sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}-{{b}^{n}}} \right)$
At k = 0 you can see a term ${{b}^{n}}$ in the summation term which gets cancelled by the last term in the equation.
By cancelling the common terms, we get:
${{a}^{n}}-{{b}^{n}}=\left( \sum\limits_{k=1}^{n}{{}^{n}{{C}_{k}}{{\left( a-b \right)}^{k}}{{b}^{n-k}}} \right)$
Now all terms are divisible by $\left( a-b \right)$
So, here $\left( a-b \right)$ is a common factor.
By taking the term $\left( a-b \right)$ common from expression we get:
${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {}^{n}{{C}_{1}}{{b}^{n-1}}+...........+{}^{n}{{C}_{n}}{{\left( a-b \right)}^{n-1}} \right)$
Now if we assume
$a=x,b=1,n=3$
By substituting the above, we get
${{x}^{3}}-1=\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)$
By substituting this into equation (A), we get:
$\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)=0$
The solutions of this equation:
$\begin{align}
& x-1=0 \\
& \Rightarrow x=1 \\
& {{x}^{2}}+x+1=0 \\
\end{align}$
So, ${{x}^{2}}+x+1=0$
We need the solutions of the above expression.
By basic algebraic knowledge we can say:
The solutions of equation:
$a{{x}^{2}}+bx+c=0$ are
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
By using this we know
$a=1,b=1,c=1$
By substituting values of a, b, c into expression we get
$\begin{align}
& x=\dfrac{-1\pm \sqrt{1-4}}{2}=\dfrac{-1\pm \sqrt{-1}\sqrt{3}}{2} \\
& x=\dfrac{-1\pm i\sqrt{3}}{2} \\
\end{align}$
$\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$ is named as $\omega $
So, $\omega =\dfrac{-1}{2}+\dfrac{i\sqrt{3}}{2}$
And also ${{\omega }^{3}}=1.............(B)$
By substituting $\omega $ into original expression, we get:
${{\omega }^{2}}+\omega +1=0..............(C)$
By substituting $\omega $ into equation (A) we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{\omega }^{334}}+3{{\omega }^{365}}$
By writing equation in terms of ${{\omega }^{3}}$ , we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5{{\left( {{\omega }^{3}} \right)}^{111}}+3{{\left( {{\omega }^{3}} \right)}^{121}}{{\omega }^{2}}$
By substituting equation (B) here, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=4+5\omega +3{{\omega }^{2}}$
By breaking terms, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=3+1+3\omega +2\omega +3{{\omega }^{2}}$
By taking “3” common we get:
$\begin{align}
& 4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=1+2\omega +3\left( 1+{{\omega }^{2}}+\omega \right) \\
& =1+2\omega
\end{align}$
By substituting $\omega $ value back, we get:
$4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=1+\left( -1+\sqrt{3}i \right)=\sqrt{3}i$
Therefore, $4+5{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}+\dfrac{i\sqrt{3}}{2} \right)}^{365}}=\sqrt{3}i$
Option (c) is correct.
Note: If in a complex number a + ib, the ratio a : b is $1:\sqrt{3}$ always uses the concept of $\omega $ . Here we can also use the conversion of a given complex number in euler form and then simplifying the Euler form,it would be an easier way to solve this type of question.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

