Answer
Verified
408.9k+ views
Hint: To find the complete identity of $\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$ at first, we will use the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angle in the numerator. Then we will divide the numerator with the denominator and finally get the answer.
Formula Used:
$\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles.
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ .
Complete step by step answer:
$\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta$
The correct answer is $1 + \tan \alpha \tan \beta$ .
So, the correct answer is Option B.
Note: For the trigonometric derivation, we will try to use the basic formulas in trigonometry to simplify any identity. Here we used the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. After using this formula the identity is easily simplified.
Similar examples:
How to complete the identity $\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta - \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \tan \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta + \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \cot \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \cot \alpha \tan \beta$ .
Formula Used:
$\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles.
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ .
Complete step by step answer:
$\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta$
The correct answer is $1 + \tan \alpha \tan \beta$ .
So, the correct answer is Option B.
Note: For the trigonometric derivation, we will try to use the basic formulas in trigonometry to simplify any identity. Here we used the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. After using this formula the identity is easily simplified.
Similar examples:
How to complete the identity $\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta - \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \tan \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta + \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \cot \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \cot \alpha \tan \beta$ .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE