
How to complete the identity $\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} =$ ?
A. $\tan \alpha \tan \beta + \cot \beta$
B. $1 + \tan \alpha \tan \beta$
C. $1 + \cot \alpha \tan \beta$
D. $1 + \cot \alpha \cot \beta$
Answer
445.2k+ views
Hint: To find the complete identity of $\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$ at first, we will use the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angle in the numerator. Then we will divide the numerator with the denominator and finally get the answer.
Formula Used:
$\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles.
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ .
Complete step by step answer:
$\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta$
The correct answer is $1 + \tan \alpha \tan \beta$ .
So, the correct answer is Option B.
Note: For the trigonometric derivation, we will try to use the basic formulas in trigonometry to simplify any identity. Here we used the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. After using this formula the identity is easily simplified.
Similar examples:
How to complete the identity $\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta - \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \tan \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta + \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \cot \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \cot \alpha \tan \beta$ .
Formula Used:
$\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles.
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ .
Complete step by step answer:
$\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta$
The correct answer is $1 + \tan \alpha \tan \beta$ .
So, the correct answer is Option B.
Note: For the trigonometric derivation, we will try to use the basic formulas in trigonometry to simplify any identity. Here we used the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. After using this formula the identity is easily simplified.
Similar examples:
How to complete the identity $\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta - \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \tan \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta + \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \cot \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \cot \alpha \tan \beta$ .
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What constitutes the central nervous system How are class 10 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE
