
How to complete the identity $\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} =$ ?
A. $\tan \alpha \tan \beta + \cot \beta$
B. $1 + \tan \alpha \tan \beta$
C. $1 + \cot \alpha \tan \beta$
D. $1 + \cot \alpha \cot \beta$
Answer
553.8k+ views
Hint: To find the complete identity of $\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$ at first, we will use the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angle in the numerator. Then we will divide the numerator with the denominator and finally get the answer.
Formula Used:
$\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles.
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ .
Complete step by step answer:
$\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta$
The correct answer is $1 + \tan \alpha \tan \beta$ .
So, the correct answer is Option B.
Note: For the trigonometric derivation, we will try to use the basic formulas in trigonometry to simplify any identity. Here we used the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. After using this formula the identity is easily simplified.
Similar examples:
How to complete the identity $\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta - \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \tan \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta + \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \cot \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \cot \alpha \tan \beta$ .
Formula Used:
$\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles.
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ .
Complete step by step answer:
$\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta$
The correct answer is $1 + \tan \alpha \tan \beta$ .
So, the correct answer is Option B.
Note: For the trigonometric derivation, we will try to use the basic formulas in trigonometry to simplify any identity. Here we used the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. After using this formula the identity is easily simplified.
Similar examples:
How to complete the identity $\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta - \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \tan \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta + \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \cot \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \cot \alpha \tan \beta$ .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

