
Check if \[\left( 5,0 \right)\] is a solution of \[2x-5y=10\].
Answer
605.1k+ views
Hint: To check if a given point is a solution, substitute the coordinates of the point in the equation. If both sides of the equation are equal, then it is a valid solution and if they are unequal then it is not a valid solution. Substitute \[\left( 5,0 \right)\] in \[2x-5y=10\] to check if both sides are equal.
Complete step-by-step answer:
For any given equation in x and y, a solution means that the values of x and y which satisfy the given equation. Thus, to check if a given point $\left( {{x}_{0}},{{y}_{0}} \right)$ is a solution of the equation $ax+by=c$, substitute $x={{x}_{0}}$ and $y={{y}_{0}}$ in the equation.
Thus, after substitution, the equation becomes $a{{x}_{0}}+b{{y}_{0}}=c$ in which a, b and c are all constants. If this equation is valid on both sides, then the solution $\left( {{x}_{0}},{{y}_{0}} \right)$ is a valid solution.
In the question given, $\left( {{x}_{0}},{{y}_{0}} \right)=\left( 5,0 \right)$ and the equation is \[2x-5y=10\].
Substituting the given point \[\left( 5,0 \right)\] in the equation \[2x-5y=10\], we get the LHS as
$\begin{align}
& 2\cdot \left( 5 \right)-5\cdot \left( 0 \right) \\
& =10-0 \\
& =10 \\
\end{align}$
Thus, the value on the LHS is 10, after substituting the point \[\left( 5,0 \right)\]. This value is the same as that on the RHS.
Since, $LHS=RHS$, therefore the solution is valid.
Note: The validity of the solution can also be checked from the graph of the equation given. Since the equation is linear, it represents a straight line. A solution of the equation means that the point lies on the given straight line. It may be noted that since there are an infinite number of points on a straight line, thus every straight line has infinitely many solutions. Also, a single equation in 2 variables is different from a system of linear equations in 2 variables. A single equation always has infinite solutions, whereas a system of equations may have either no solution, exactly 1 solution or infinitely many solutions depending on whether the lines are parallel, intersecting, or coincident respectively.
Complete step-by-step answer:
For any given equation in x and y, a solution means that the values of x and y which satisfy the given equation. Thus, to check if a given point $\left( {{x}_{0}},{{y}_{0}} \right)$ is a solution of the equation $ax+by=c$, substitute $x={{x}_{0}}$ and $y={{y}_{0}}$ in the equation.
Thus, after substitution, the equation becomes $a{{x}_{0}}+b{{y}_{0}}=c$ in which a, b and c are all constants. If this equation is valid on both sides, then the solution $\left( {{x}_{0}},{{y}_{0}} \right)$ is a valid solution.
In the question given, $\left( {{x}_{0}},{{y}_{0}} \right)=\left( 5,0 \right)$ and the equation is \[2x-5y=10\].
Substituting the given point \[\left( 5,0 \right)\] in the equation \[2x-5y=10\], we get the LHS as
$\begin{align}
& 2\cdot \left( 5 \right)-5\cdot \left( 0 \right) \\
& =10-0 \\
& =10 \\
\end{align}$
Thus, the value on the LHS is 10, after substituting the point \[\left( 5,0 \right)\]. This value is the same as that on the RHS.
Since, $LHS=RHS$, therefore the solution is valid.
Note: The validity of the solution can also be checked from the graph of the equation given. Since the equation is linear, it represents a straight line. A solution of the equation means that the point lies on the given straight line. It may be noted that since there are an infinite number of points on a straight line, thus every straight line has infinitely many solutions. Also, a single equation in 2 variables is different from a system of linear equations in 2 variables. A single equation always has infinite solutions, whereas a system of equations may have either no solution, exactly 1 solution or infinitely many solutions depending on whether the lines are parallel, intersecting, or coincident respectively.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

