Check if \[\left( 5,0 \right)\] is a solution of \[2x-5y=10\].
Last updated date: 25th Mar 2023
•
Total views: 306k
•
Views today: 7.86k
Answer
306k+ views
Hint: To check if a given point is a solution, substitute the coordinates of the point in the equation. If both sides of the equation are equal, then it is a valid solution and if they are unequal then it is not a valid solution. Substitute \[\left( 5,0 \right)\] in \[2x-5y=10\] to check if both sides are equal.
Complete step-by-step answer:
For any given equation in x and y, a solution means that the values of x and y which satisfy the given equation. Thus, to check if a given point $\left( {{x}_{0}},{{y}_{0}} \right)$ is a solution of the equation $ax+by=c$, substitute $x={{x}_{0}}$ and $y={{y}_{0}}$ in the equation.
Thus, after substitution, the equation becomes $a{{x}_{0}}+b{{y}_{0}}=c$ in which a, b and c are all constants. If this equation is valid on both sides, then the solution $\left( {{x}_{0}},{{y}_{0}} \right)$ is a valid solution.
In the question given, $\left( {{x}_{0}},{{y}_{0}} \right)=\left( 5,0 \right)$ and the equation is \[2x-5y=10\].
Substituting the given point \[\left( 5,0 \right)\] in the equation \[2x-5y=10\], we get the LHS as
$\begin{align}
& 2\cdot \left( 5 \right)-5\cdot \left( 0 \right) \\
& =10-0 \\
& =10 \\
\end{align}$
Thus, the value on the LHS is 10, after substituting the point \[\left( 5,0 \right)\]. This value is the same as that on the RHS.
Since, $LHS=RHS$, therefore the solution is valid.
Note: The validity of the solution can also be checked from the graph of the equation given. Since the equation is linear, it represents a straight line. A solution of the equation means that the point lies on the given straight line. It may be noted that since there are an infinite number of points on a straight line, thus every straight line has infinitely many solutions. Also, a single equation in 2 variables is different from a system of linear equations in 2 variables. A single equation always has infinite solutions, whereas a system of equations may have either no solution, exactly 1 solution or infinitely many solutions depending on whether the lines are parallel, intersecting, or coincident respectively.
Complete step-by-step answer:
For any given equation in x and y, a solution means that the values of x and y which satisfy the given equation. Thus, to check if a given point $\left( {{x}_{0}},{{y}_{0}} \right)$ is a solution of the equation $ax+by=c$, substitute $x={{x}_{0}}$ and $y={{y}_{0}}$ in the equation.
Thus, after substitution, the equation becomes $a{{x}_{0}}+b{{y}_{0}}=c$ in which a, b and c are all constants. If this equation is valid on both sides, then the solution $\left( {{x}_{0}},{{y}_{0}} \right)$ is a valid solution.
In the question given, $\left( {{x}_{0}},{{y}_{0}} \right)=\left( 5,0 \right)$ and the equation is \[2x-5y=10\].
Substituting the given point \[\left( 5,0 \right)\] in the equation \[2x-5y=10\], we get the LHS as
$\begin{align}
& 2\cdot \left( 5 \right)-5\cdot \left( 0 \right) \\
& =10-0 \\
& =10 \\
\end{align}$
Thus, the value on the LHS is 10, after substituting the point \[\left( 5,0 \right)\]. This value is the same as that on the RHS.
Since, $LHS=RHS$, therefore the solution is valid.
Note: The validity of the solution can also be checked from the graph of the equation given. Since the equation is linear, it represents a straight line. A solution of the equation means that the point lies on the given straight line. It may be noted that since there are an infinite number of points on a straight line, thus every straight line has infinitely many solutions. Also, a single equation in 2 variables is different from a system of linear equations in 2 variables. A single equation always has infinite solutions, whereas a system of equations may have either no solution, exactly 1 solution or infinitely many solutions depending on whether the lines are parallel, intersecting, or coincident respectively.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
