Answer
Verified
490.8k+ views
Hint: To solve the question, we have to calculate the number of possible outcomes at the given conditions. To calculate probability, divide the obtained number of outcomes to the total number of outcomes obtained when a card is drawn.
Complete step-by-step answer:
The numbers on the cards placed in a box given are 3, 4, 5, …...50
The number of possible outcomes when a card is drawn from the above-mentioned cards
= 50 – 2 = 48
Since, only 1, 2 numbers have not marked the cards considering the series of natural numbers.
The divisibility rule of 6 is that the number should be divisible by both numbers 2 and 3. The number is divisible by 2 if it is an even number. The number is divisible by 3 when the sum of all the digits of the number is a multiple of 3.
Since, the marked numbers are in the range of the first 10 multiples of 6. We have to list the multiples of 6 below 50. Thus, we get 6, 12, ,18, 24, 30, 36, 42, 48 are the multiples of 6 that are marked on the given cards.
Thus, the number of outcomes of getting a card marked number which is divisible by 6 when a card is drawn = 8.
The probability of getting a card marked number which is divisible by 6 when a card is drawn = Ratio of the number of outcomes of getting a card marked number which is divisible by 6 when a card is drawn to the number of possible outcomes when a card is drawn from the above-mentioned cards
\[=\dfrac{8}{48}\]
\[=\dfrac{1}{6}\]
\[\therefore \] The probability of getting a card marked number which is divisible by 6 when a card is drawn \[=\dfrac{1}{6}=0.16\]
3, 4, 5, 6, 7, 8, 9 are the single-digit numbers among the numbers marked on the cards when a card is drawn.
Thus, the number of outcomes of getting a single-digit number marked card when a card is drawn
= 7
The probability of getting a single-digit number marked card when a card is drawn = Ratio of the number of outcomes of getting a single-digit number marked card when a card is drawn, to the number of possible outcomes when a card is drawn from the above-mentioned cards
\[=\dfrac{7}{48}\]
\[\therefore \] The probability of getting a single-digit number marked card when a card is drawn \[=\dfrac{7}{48}=0.146\]
Note: The possibility of mistake can be not able to analyse the given condition independently and apply the quick method of calculating the number of outcomes instead of the general approach since the given marked numbers are below 50 which ease the calculation.
Complete step-by-step answer:
The numbers on the cards placed in a box given are 3, 4, 5, …...50
The number of possible outcomes when a card is drawn from the above-mentioned cards
= 50 – 2 = 48
Since, only 1, 2 numbers have not marked the cards considering the series of natural numbers.
The divisibility rule of 6 is that the number should be divisible by both numbers 2 and 3. The number is divisible by 2 if it is an even number. The number is divisible by 3 when the sum of all the digits of the number is a multiple of 3.
Since, the marked numbers are in the range of the first 10 multiples of 6. We have to list the multiples of 6 below 50. Thus, we get 6, 12, ,18, 24, 30, 36, 42, 48 are the multiples of 6 that are marked on the given cards.
Thus, the number of outcomes of getting a card marked number which is divisible by 6 when a card is drawn = 8.
The probability of getting a card marked number which is divisible by 6 when a card is drawn = Ratio of the number of outcomes of getting a card marked number which is divisible by 6 when a card is drawn to the number of possible outcomes when a card is drawn from the above-mentioned cards
\[=\dfrac{8}{48}\]
\[=\dfrac{1}{6}\]
\[\therefore \] The probability of getting a card marked number which is divisible by 6 when a card is drawn \[=\dfrac{1}{6}=0.16\]
3, 4, 5, 6, 7, 8, 9 are the single-digit numbers among the numbers marked on the cards when a card is drawn.
Thus, the number of outcomes of getting a single-digit number marked card when a card is drawn
= 7
The probability of getting a single-digit number marked card when a card is drawn = Ratio of the number of outcomes of getting a single-digit number marked card when a card is drawn, to the number of possible outcomes when a card is drawn from the above-mentioned cards
\[=\dfrac{7}{48}\]
\[\therefore \] The probability of getting a single-digit number marked card when a card is drawn \[=\dfrac{7}{48}=0.146\]
Note: The possibility of mistake can be not able to analyse the given condition independently and apply the quick method of calculating the number of outcomes instead of the general approach since the given marked numbers are below 50 which ease the calculation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Discuss the main reasons for poverty in India
Why is monsoon considered a unifying bond class 10 social science CBSE
A Paragraph on Pollution in about 100-150 Words
Why does India have a monsoon type of climate class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain Anti-Poverty measures taken by the Government of India