# What is the cardinality of the power set of the set {0, 1, 2}?

(a) 8

(b) 6

(c) 7

(d) 9

Answer

Verified

135.4k+ views

**Hint**: We are given a set say S as {0, 1, 2}. We will first find the power set of S. The power set of any set contains all the subsets of the given set. So, we will find the subsets of S = {0, 1, 2}. Then we will make a set using a subset of S which will make our power set. At last, the cardinality of the power set is the total element of the power set, so that we count the elements and get our solution.

**:**

__Complete step-by-step answer__We are given a set S as {0, 1, 2}. We are asked to find the cardinality of the power set of S. We will first look for the power set of S and then find further things. Now, we know that the power set of any set is the collection of all possible subsets of the given set S.

Now, as we have S as {0, 1, 2}. So the possible subset of S are

\[\phi ,\left\{ 0 \right\},\left\{ 1 \right\},\left\{ 2 \right\},\left\{ 0,1 \right\},\left\{ 1,2 \right\},\left\{ 0,2 \right\},\left\{ 0,1,2 \right\}\]

So, these are our subsets.

Now, the power set is a collection of all the subsets as elements. So, the power set will become

\[P\left( S \right)=\left\{ \left\{ 0 \right\},\left\{ 1 \right\},\left\{ 2 \right\},\left\{ 0,1 \right\},\left\{ 1,2 \right\},\left\{ 0,2 \right\},\left\{ 0,1,2 \right\},\phi \right\}\]

Now, we look for the cardinality of the power set. The cardinality of the set is the total number of elements contained in that set. Our power set contains 8 elements, so we get that cardinality of the power set of S = {0, 1, 2} as 8.

**So, the correct answer is “Option A”.**

**Note**: This can be done in an alternate method. We have the set as {0, 1, 2}. We have to find the cardinality of the power set. We know that the power set is the collection of all the subsets of the given set and the total number of elements of the power set is given as

\[\text{Number of elements of power set}={{2}^{n}}\]

where n is the total elements in the given set.

Our set {0, 1, 2} has three elements. So, n = 3 implies that the number of elements in the power set is \[{{2}^{3}}\] that is 8.

The cardinality of the power set is the number of elements in the power set. From the above, we have the power set as 8 elements. Therefore, the cardinality of the power set of {1, 2, 0} is 8.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

The coordinates of the points A and B are a0 and a0 class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India