
Calculate the 10th term of the infinite series $4,6,8........\infty $.
A) 18
B) 20
C) 22
D) 26
Answer
577.8k+ views
Hint: To find the 10th term of the given infinite series we need to first identify the series and then use the formula for its nth term to find the 10th term.
An arithmetic progression is given as: $a,a + d,a + 2d,a + 3d,..........a + (n - 1)d.$ with ‘a’ as the first term and ‘d’ as the common difference. The nth term of this series will be given as:
${a_n} = a + \left( {n - 1} \right)d$.
Complete step-by-step solution:
Now the series given to us is. so the difference between the consecutive terms is given as:
$6 - 4 = 2;8 - 6 = 2...........$
That is the difference between the next term and the previous term is the same for all the consecutive terms and the first term is 4.
Therefore, we can conclude that the given series is an Arithmetic Series with the first term ‘a’=4 and the common difference ‘d’=2.
Now for an Arithmetic Progression the formula to find its nth term is given as:
${a_n} = \left[ {a + \left( {n - 1} \right)d} \right]$
Where ${a_n}$is the nth term, a is the first term n is the number of terms and d is the common difference.
Now for the given series, to find the 10th term we have to take n = 10 and we already have a = 4, d= 2
So putting the values of a, d and n in the formula for nth term we will get ${a_{_{10}}}$as:
$
{a_{10}} = \left[ {4 + \left( {10 - 1} \right)2} \right] \\
= \left[ {4 + 9 \times 2} \right] \\
= \left[ {4 + 18} \right] \\
= 22 \\
$
That is, the 10th term of the given infinite series will be 22.
The given infinite series is an Arithmetic Series and since we had to find the 10th term so we used the formula of the nth term of an Arithmetic Series to get the 10th term and the 10th term is 22.
Hence, the correct answer is option C.
Note: Identifying the series correctly is essential, since if the series is not identified correctly then the whole calculation that follows will be incorrect. The sum of n terms of an Arithmetic Progression is given as: ${S_n} = \dfrac{n}{2}\left( {a + l} \right)$ where a is the first term and l is the last term, the alternative formula for sum of n terms for the same series is given as: ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ . We can use either depending on the question.
An arithmetic progression is given as: $a,a + d,a + 2d,a + 3d,..........a + (n - 1)d.$ with ‘a’ as the first term and ‘d’ as the common difference. The nth term of this series will be given as:
${a_n} = a + \left( {n - 1} \right)d$.
Complete step-by-step solution:
Now the series given to us is. so the difference between the consecutive terms is given as:
$6 - 4 = 2;8 - 6 = 2...........$
That is the difference between the next term and the previous term is the same for all the consecutive terms and the first term is 4.
Therefore, we can conclude that the given series is an Arithmetic Series with the first term ‘a’=4 and the common difference ‘d’=2.
Now for an Arithmetic Progression the formula to find its nth term is given as:
${a_n} = \left[ {a + \left( {n - 1} \right)d} \right]$
Where ${a_n}$is the nth term, a is the first term n is the number of terms and d is the common difference.
Now for the given series, to find the 10th term we have to take n = 10 and we already have a = 4, d= 2
So putting the values of a, d and n in the formula for nth term we will get ${a_{_{10}}}$as:
$
{a_{10}} = \left[ {4 + \left( {10 - 1} \right)2} \right] \\
= \left[ {4 + 9 \times 2} \right] \\
= \left[ {4 + 18} \right] \\
= 22 \\
$
That is, the 10th term of the given infinite series will be 22.
The given infinite series is an Arithmetic Series and since we had to find the 10th term so we used the formula of the nth term of an Arithmetic Series to get the 10th term and the 10th term is 22.
Hence, the correct answer is option C.
Note: Identifying the series correctly is essential, since if the series is not identified correctly then the whole calculation that follows will be incorrect. The sum of n terms of an Arithmetic Progression is given as: ${S_n} = \dfrac{n}{2}\left( {a + l} \right)$ where a is the first term and l is the last term, the alternative formula for sum of n terms for the same series is given as: ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ . We can use either depending on the question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

