
What are the odds in favor of throwing at least ‘7’ in a single throw with two dice?
Answer
569.1k+ views
Hint: To calculate the odds of occurrence of 7, we first calculate the total sample space and sample space of the given event. Odds of an event referred to the chance of occurrence to the chance of not occurrence of the event. Sample space is nothing but the number of possibilities of an event.
Complete step-by-step solution:
The total number of possibilities of the event are:
Total number of outcomes of two dices = $6 \times 6 = 36$
Each dice can show up six different numbers.
Let E be the event “Sum of the number on the two dice is at least 7”.
Therefore, Sample space of E =
\\[E = \left\{
\left( {1,6} \right)\left( {2,5} \right)\left( {3,4} \right)\left( {4,3} \right)\left( {5,2} \right)\left( {6,1} \right) \\
\left( {3,5} \right)\left( {4,4} \right)\left( {5,3} \right)\left( {6,2} \right) \\
\left( {6,3} \right)\left( {4,5} \right)\left( {5,4} \right)\left( {3,6} \right) \\
\left( {6,4} \right)\left( {5,5} \right)\left( {4,6} \right) \\
\left( {5,6} \right)\left( {6,5} \right) \\
\left( {6,6} \right) \\
\right\}\]
Now, N (E), represents total sample space,
From above N (E) = 21
Also, we can write sample space for (Not E) because we know the total sample space is 36.
N (Not E) = 36 – 21 = 15
$\therefore {\text{P}}\left( {\text{E}} \right) = \dfrac{{21}}{{36}}{\text{ and P}}\left( {{\text{not E}}} \right) = \dfrac{{15}}{{36}}{\text{ - - - }}\left( 1 \right)$
Hence, In favor of event E,
\[ \Rightarrow P\left( E \right):P\left( {{\text{not }}E} \right) \\
\Rightarrow \dfrac{{P\left( E \right)}}{{P\left( {{\text{not }}E} \right)}} \]
Putting the values of P (E) and P (Not E) from equation (1), we get
\[\Rightarrow \dfrac{{\left( {\dfrac{{21}}{{36}}} \right)}}{{\left( {\dfrac{{15}}{{36}}} \right)}} \\
\Rightarrow \dfrac{{21}}{{15}} \\
\Rightarrow \dfrac{7}{5} \]
Note: In order to solve this type of problems the key is to always keep the total sample space of dice in our mind and in order to find the probability of an event, just divide the sample space of that event with the total sample space calculated. The probability of an event is defined as the ratio of favorable outcomes to the total number of outcomes of an event.
Complete step-by-step solution:
The total number of possibilities of the event are:
Total number of outcomes of two dices = $6 \times 6 = 36$
Each dice can show up six different numbers.
Let E be the event “Sum of the number on the two dice is at least 7”.
Therefore, Sample space of E =
\\[E = \left\{
\left( {1,6} \right)\left( {2,5} \right)\left( {3,4} \right)\left( {4,3} \right)\left( {5,2} \right)\left( {6,1} \right) \\
\left( {3,5} \right)\left( {4,4} \right)\left( {5,3} \right)\left( {6,2} \right) \\
\left( {6,3} \right)\left( {4,5} \right)\left( {5,4} \right)\left( {3,6} \right) \\
\left( {6,4} \right)\left( {5,5} \right)\left( {4,6} \right) \\
\left( {5,6} \right)\left( {6,5} \right) \\
\left( {6,6} \right) \\
\right\}\]
Now, N (E), represents total sample space,
From above N (E) = 21
Also, we can write sample space for (Not E) because we know the total sample space is 36.
N (Not E) = 36 – 21 = 15
$\therefore {\text{P}}\left( {\text{E}} \right) = \dfrac{{21}}{{36}}{\text{ and P}}\left( {{\text{not E}}} \right) = \dfrac{{15}}{{36}}{\text{ - - - }}\left( 1 \right)$
Hence, In favor of event E,
\[ \Rightarrow P\left( E \right):P\left( {{\text{not }}E} \right) \\
\Rightarrow \dfrac{{P\left( E \right)}}{{P\left( {{\text{not }}E} \right)}} \]
Putting the values of P (E) and P (Not E) from equation (1), we get
\[\Rightarrow \dfrac{{\left( {\dfrac{{21}}{{36}}} \right)}}{{\left( {\dfrac{{15}}{{36}}} \right)}} \\
\Rightarrow \dfrac{{21}}{{15}} \\
\Rightarrow \dfrac{7}{5} \]
Note: In order to solve this type of problems the key is to always keep the total sample space of dice in our mind and in order to find the probability of an event, just divide the sample space of that event with the total sample space calculated. The probability of an event is defined as the ratio of favorable outcomes to the total number of outcomes of an event.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

