
What are the odds in favor of throwing at least ‘7’ in a single throw with two dice?
Answer
494.7k+ views
Hint: To calculate the odds of occurrence of 7, we first calculate the total sample space and sample space of the given event. Odds of an event referred to the chance of occurrence to the chance of not occurrence of the event. Sample space is nothing but the number of possibilities of an event.
Complete step-by-step solution:
The total number of possibilities of the event are:
Total number of outcomes of two dices = $6 \times 6 = 36$
Each dice can show up six different numbers.
Let E be the event “Sum of the number on the two dice is at least 7”.
Therefore, Sample space of E =
\\[E = \left\{
\left( {1,6} \right)\left( {2,5} \right)\left( {3,4} \right)\left( {4,3} \right)\left( {5,2} \right)\left( {6,1} \right) \\
\left( {3,5} \right)\left( {4,4} \right)\left( {5,3} \right)\left( {6,2} \right) \\
\left( {6,3} \right)\left( {4,5} \right)\left( {5,4} \right)\left( {3,6} \right) \\
\left( {6,4} \right)\left( {5,5} \right)\left( {4,6} \right) \\
\left( {5,6} \right)\left( {6,5} \right) \\
\left( {6,6} \right) \\
\right\}\]
Now, N (E), represents total sample space,
From above N (E) = 21
Also, we can write sample space for (Not E) because we know the total sample space is 36.
N (Not E) = 36 – 21 = 15
$\therefore {\text{P}}\left( {\text{E}} \right) = \dfrac{{21}}{{36}}{\text{ and P}}\left( {{\text{not E}}} \right) = \dfrac{{15}}{{36}}{\text{ - - - }}\left( 1 \right)$
Hence, In favor of event E,
\[ \Rightarrow P\left( E \right):P\left( {{\text{not }}E} \right) \\
\Rightarrow \dfrac{{P\left( E \right)}}{{P\left( {{\text{not }}E} \right)}} \]
Putting the values of P (E) and P (Not E) from equation (1), we get
\[\Rightarrow \dfrac{{\left( {\dfrac{{21}}{{36}}} \right)}}{{\left( {\dfrac{{15}}{{36}}} \right)}} \\
\Rightarrow \dfrac{{21}}{{15}} \\
\Rightarrow \dfrac{7}{5} \]
Note: In order to solve this type of problems the key is to always keep the total sample space of dice in our mind and in order to find the probability of an event, just divide the sample space of that event with the total sample space calculated. The probability of an event is defined as the ratio of favorable outcomes to the total number of outcomes of an event.
Complete step-by-step solution:
The total number of possibilities of the event are:
Total number of outcomes of two dices = $6 \times 6 = 36$
Each dice can show up six different numbers.
Let E be the event “Sum of the number on the two dice is at least 7”.
Therefore, Sample space of E =
\\[E = \left\{
\left( {1,6} \right)\left( {2,5} \right)\left( {3,4} \right)\left( {4,3} \right)\left( {5,2} \right)\left( {6,1} \right) \\
\left( {3,5} \right)\left( {4,4} \right)\left( {5,3} \right)\left( {6,2} \right) \\
\left( {6,3} \right)\left( {4,5} \right)\left( {5,4} \right)\left( {3,6} \right) \\
\left( {6,4} \right)\left( {5,5} \right)\left( {4,6} \right) \\
\left( {5,6} \right)\left( {6,5} \right) \\
\left( {6,6} \right) \\
\right\}\]
Now, N (E), represents total sample space,
From above N (E) = 21
Also, we can write sample space for (Not E) because we know the total sample space is 36.
N (Not E) = 36 – 21 = 15
$\therefore {\text{P}}\left( {\text{E}} \right) = \dfrac{{21}}{{36}}{\text{ and P}}\left( {{\text{not E}}} \right) = \dfrac{{15}}{{36}}{\text{ - - - }}\left( 1 \right)$
Hence, In favor of event E,
\[ \Rightarrow P\left( E \right):P\left( {{\text{not }}E} \right) \\
\Rightarrow \dfrac{{P\left( E \right)}}{{P\left( {{\text{not }}E} \right)}} \]
Putting the values of P (E) and P (Not E) from equation (1), we get
\[\Rightarrow \dfrac{{\left( {\dfrac{{21}}{{36}}} \right)}}{{\left( {\dfrac{{15}}{{36}}} \right)}} \\
\Rightarrow \dfrac{{21}}{{15}} \\
\Rightarrow \dfrac{7}{5} \]
Note: In order to solve this type of problems the key is to always keep the total sample space of dice in our mind and in order to find the probability of an event, just divide the sample space of that event with the total sample space calculated. The probability of an event is defined as the ratio of favorable outcomes to the total number of outcomes of an event.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Trending doubts
Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
