Answer
Verified
420.3k+ views
Hint:
We know from the question that the coin is tossed 5 times. So, we can get 0, 1, 2, 3, 4, 5 different types of consecutive held. So, we will first find the probability of each type of consecutive head and then we will calculate the value of X by multiplying the value it takes with the respective probability occurrence and then summing all of them.
Complete step by step answer:
We know from the question that the coin is tossed 5 times. And, we also know that when we toss a fair coin then we two possible outcomes, that is head, and tail.
So, total number of possible combinations we will get when coin is tossed 5 times is $ 2\times 2\times 2\times 2\times 2 $ = 32
Also, we will have chances of getting 0, 1, 2, 3, 4, or 5 consecutive heads when coin is tossed 5 times.
Now, we will calculate the probability of each of them by using grouping.
So, probability of getting ‘0’ consecutive head (i.e. TTTTT) is $ \dfrac{1}{32} $ .
Probability of getting ‘1’ consecutive head (i.e. HTTTT, THTTT, TTHTT, TTTHT, TTTTH, HTHTT, HTTHT, HTTTH, THTHT, TTHTH, THTTH ) is $ \dfrac{12}{32} $
Probability of getting ‘2’ consecutive head (i.e. HHTTT, THHTT, TTHHT, TTTHH, HHTHH, HHTTH, HHTHT, THTHH, HTTHH, THHTH, HTHHT ) is $ \dfrac{11}{32} $ .
Probability of getting ‘3’ consecutive head (i.e. HHHTT, THHHT, TTHHH, HTHHH, HHHTH ) is $ \dfrac{5}{32} $
Probability of getting ‘4’ consecutive head (i.e. HHHHT, THHHH ) is $ \dfrac{2}{32} $ .
Probability of getting ‘5’ consecutive head (i.e. HHHHH ) is $ \dfrac{1}{32} $ .
Now, we know from the question that X is assigned value k when k consecutive heads are obtained for k = 3, 4, 5, and X takes value -1 when k = 0, 1, or 2.
So, we can say that when k = 3, X will take value $ 3\times \Pr \text{obability of getting 3 consecutive heads} $ = $ 3\times \dfrac{5}{32} $ and similarly we can do for 4 and 5.
And, when k = 0, X will take value $ -1\times \Pr \text{obability of getting 1 consecutive head} $ = $ -1\times \dfrac{1}{32} $ and similarly we can do for 1 and 2
So, total value of X will be = $ -1\times \dfrac{1}{32}-1\times \dfrac{12}{32}-1\times \dfrac{11}{32}+3\times \dfrac{5}{32}+4\times \dfrac{2}{32}+5\times \dfrac{1}{32} $
$ =-\dfrac{1}{32}-\dfrac{12}{32}-\dfrac{11}{32}+\dfrac{15}{32}+\dfrac{8}{32}+\dfrac{5}{32} $
$ =\dfrac{28-24}{32} $
$ =\dfrac{4}{32}=\dfrac{1}{8} $
This is our required solution.
So, option (a) is our correct answer.
Note:
Which calculating the value of X students are required to note that there is always the probability of obtaining that value for example let us say that X is assigned the value 3, so there is always the probability of getting 3 consecutive head which is less than 1 so we are required to multiply probability to an assigned value which is here 3 to calculate the value of X.
.
We know from the question that the coin is tossed 5 times. So, we can get 0, 1, 2, 3, 4, 5 different types of consecutive held. So, we will first find the probability of each type of consecutive head and then we will calculate the value of X by multiplying the value it takes with the respective probability occurrence and then summing all of them.
Complete step by step answer:
We know from the question that the coin is tossed 5 times. And, we also know that when we toss a fair coin then we two possible outcomes, that is head, and tail.
So, total number of possible combinations we will get when coin is tossed 5 times is $ 2\times 2\times 2\times 2\times 2 $ = 32
Also, we will have chances of getting 0, 1, 2, 3, 4, or 5 consecutive heads when coin is tossed 5 times.
Now, we will calculate the probability of each of them by using grouping.
So, probability of getting ‘0’ consecutive head (i.e. TTTTT) is $ \dfrac{1}{32} $ .
Probability of getting ‘1’ consecutive head (i.e. HTTTT, THTTT, TTHTT, TTTHT, TTTTH, HTHTT, HTTHT, HTTTH, THTHT, TTHTH, THTTH ) is $ \dfrac{12}{32} $
Probability of getting ‘2’ consecutive head (i.e. HHTTT, THHTT, TTHHT, TTTHH, HHTHH, HHTTH, HHTHT, THTHH, HTTHH, THHTH, HTHHT ) is $ \dfrac{11}{32} $ .
Probability of getting ‘3’ consecutive head (i.e. HHHTT, THHHT, TTHHH, HTHHH, HHHTH ) is $ \dfrac{5}{32} $
Probability of getting ‘4’ consecutive head (i.e. HHHHT, THHHH ) is $ \dfrac{2}{32} $ .
Probability of getting ‘5’ consecutive head (i.e. HHHHH ) is $ \dfrac{1}{32} $ .
Now, we know from the question that X is assigned value k when k consecutive heads are obtained for k = 3, 4, 5, and X takes value -1 when k = 0, 1, or 2.
So, we can say that when k = 3, X will take value $ 3\times \Pr \text{obability of getting 3 consecutive heads} $ = $ 3\times \dfrac{5}{32} $ and similarly we can do for 4 and 5.
And, when k = 0, X will take value $ -1\times \Pr \text{obability of getting 1 consecutive head} $ = $ -1\times \dfrac{1}{32} $ and similarly we can do for 1 and 2
So, total value of X will be = $ -1\times \dfrac{1}{32}-1\times \dfrac{12}{32}-1\times \dfrac{11}{32}+3\times \dfrac{5}{32}+4\times \dfrac{2}{32}+5\times \dfrac{1}{32} $
$ =-\dfrac{1}{32}-\dfrac{12}{32}-\dfrac{11}{32}+\dfrac{15}{32}+\dfrac{8}{32}+\dfrac{5}{32} $
$ =\dfrac{28-24}{32} $
$ =\dfrac{4}{32}=\dfrac{1}{8} $
This is our required solution.
So, option (a) is our correct answer.
Note:
Which calculating the value of X students are required to note that there is always the probability of obtaining that value for example let us say that X is assigned the value 3, so there is always the probability of getting 3 consecutive head which is less than 1 so we are required to multiply probability to an assigned value which is here 3 to calculate the value of X.
.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths