
$AD \bot CD$ and $CB \bot CD$. If AQ=BP and DP=CQ , prove that $\angle DAQ = \angle CBP$
Answer
538.8k+ views
Hint: Given that, $AD \bot CD$ and $CB \bot CD$. Now we have to prove $\angle DAQ = \angle CBP$. Note that both $\vartriangle ADQ$ and $\vartriangle BPC$ are right angled triangles. AQ=BP and DP=CQ, given. Therefore, first we have to show that the triangles are congruent. And lastly, show that $\angle DAQ = \angle CBP$, as they are corresponding parts of congruent triangles.
Complete step-by-step solution:
Given, $AD \bot CD$ and $CB \bot CD$.
$ \Rightarrow \angle ADQ = \angle BCP = {90^ \circ }$
Therefore, both $\vartriangle ADQ$ and $\vartriangle BPC$ are right angled triangles.
Also, AQ=BP and DP=CQ
$ \Rightarrow DP + PQ = CQ + PQ$
$ \Rightarrow DQ = CP$
Now, in $\vartriangle ADQ$ and $\vartriangle BPC$,
$\angle ADQ = \angle BCP = {90^ \circ }$
AQ=BP (given)
DQ=CP
Therefore, $\vartriangle ADQ \cong \vartriangle BPC$ (by RHS rule of congruence)
Hence, $\angle DAQ = \angle CBP$ (corresponding parts of congruent triangles)
Note: The four rules of congruency are as follows:
SSS: When three sides of two different triangles are equal in length.
SAS: When two sides are equal, and the angle between them is also the same in measure.
AAS: When any two angles and a side is equal.
RHS: When the hypotenuse and any one side of two right angled triangles are equal in length.
Complete step-by-step solution:
Given, $AD \bot CD$ and $CB \bot CD$.
$ \Rightarrow \angle ADQ = \angle BCP = {90^ \circ }$
Therefore, both $\vartriangle ADQ$ and $\vartriangle BPC$ are right angled triangles.
Also, AQ=BP and DP=CQ
$ \Rightarrow DP + PQ = CQ + PQ$
$ \Rightarrow DQ = CP$
Now, in $\vartriangle ADQ$ and $\vartriangle BPC$,
$\angle ADQ = \angle BCP = {90^ \circ }$
AQ=BP (given)
DQ=CP
Therefore, $\vartriangle ADQ \cong \vartriangle BPC$ (by RHS rule of congruence)
Hence, $\angle DAQ = \angle CBP$ (corresponding parts of congruent triangles)
Note: The four rules of congruency are as follows:
SSS: When three sides of two different triangles are equal in length.
SAS: When two sides are equal, and the angle between them is also the same in measure.
AAS: When any two angles and a side is equal.
RHS: When the hypotenuse and any one side of two right angled triangles are equal in length.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


