
$ABCDEF$ is a regular hexagon in the $XY$ plane vertices in the anti-clockwise sense. \[\overrightarrow {AB} = 2\hat i\], then $\overrightarrow {CD} = $
A) \[\hat i - \sqrt 3 \hat j\]
B) $\hat i + \sqrt 3 \hat j$
C) $ - \hat i + \sqrt 3 \hat j$
D) $ - \hat i - \sqrt 3 \hat j$
Answer
465.9k+ views
Hint: Here, it is given that $ABCDEF$ is a regular hexagon means all the sides are of equal length of \[2\] units and is in the $XY$ plane. We can assume that the vertex $A$ of the regular hexagon is the origin of the coordinate system and then we can find the coordinate of all other vertices by using some trigonometric equations. Then to find the vector equation of any sides we can simply subtract both the coordinates of two vertices and put $\hat i$ with $x$ coordinates and $\hat j$ with $y$ coordinate.
Complete step-by-step solution:
Here, it is given that $ABCDEF$ is a regular hexagon in the $XY$ plane vertices in the anti-clockwise sense. And we have to find $\overrightarrow {CD} = $
Let vertex $A$ be the origin of the coordinate system and vertex $B$ lie on the $x$ axis two units away from the origin. So, the coordinate of $A$ is $\left( {0,0} \right)$ and the coordinate of $B = \left( {2,0} \right)$.
Now, $AFG$ is a triangle in which $\angle FAG = 3{0^ \circ }$ as $\angle FAG = \angle FAB - \angle G{\rm A}{\rm B}$ and each angle of hexagon is $\angle FAB = 12{0^ \circ }$ and $\angle GAB = {90^ \circ }$ because both axis are perpendicular to each other.
Side $AG = AF\cos {30^ \circ }$
Putting the length of side $AF$ and value of $\cos {30^ \circ }$ we get,
$AG = 2 \times \dfrac{{\sqrt 3 }}{2} = \sqrt 3 $
And the side $FG = AF\sin {30^ \circ }$
Putting the length of side $AF$ and value of $\sin {30^ \circ }$ we get,
$FG = 2 \times \dfrac{1}{2} = 1$
Now, the coordinate of vertex $C = \left( {2 + 1,\sqrt 3 } \right) = \left( {3,\sqrt 3 } \right)$. And vertex $D = \left( {2,2\sqrt 3 } \right)$, vertex ${\rm E} = \left( {0,2\sqrt 3 } \right)$ and vertex $F = \left( { - 1,\sqrt 3 } \right)$.
Now, we have two find the vector $\overrightarrow {CD} $ and we get this by subtracting the coordinates of vertex $C$ from the coordinates of vertex $D$. So,
$
\overrightarrow {CD} = \left( {2 - 3} \right)\hat i + \left( {2\sqrt 3 - \sqrt 3 } \right)\hat j \\
\overrightarrow {CD} = - \hat i + \sqrt 3 \hat j
$
Thus, option (C) is correct.
Note: Similarly, other sides vectors like $\overrightarrow {BC} ,\overrightarrow {DE} ,\overrightarrow {EF} $ and $\overrightarrow {FA} $ can be found by subtracting the coordinates of two vertices. Only care while subtracting the coordinates should be taken is subtract the coordinates of the first vertex from that of the second vertex. And put $\hat i$ corresponding to $x$ coordinates and $\hat j$ corresponding to $y$ coordinates.
Complete step-by-step solution:
Here, it is given that $ABCDEF$ is a regular hexagon in the $XY$ plane vertices in the anti-clockwise sense. And we have to find $\overrightarrow {CD} = $

Let vertex $A$ be the origin of the coordinate system and vertex $B$ lie on the $x$ axis two units away from the origin. So, the coordinate of $A$ is $\left( {0,0} \right)$ and the coordinate of $B = \left( {2,0} \right)$.
Now, $AFG$ is a triangle in which $\angle FAG = 3{0^ \circ }$ as $\angle FAG = \angle FAB - \angle G{\rm A}{\rm B}$ and each angle of hexagon is $\angle FAB = 12{0^ \circ }$ and $\angle GAB = {90^ \circ }$ because both axis are perpendicular to each other.
Side $AG = AF\cos {30^ \circ }$
Putting the length of side $AF$ and value of $\cos {30^ \circ }$ we get,
$AG = 2 \times \dfrac{{\sqrt 3 }}{2} = \sqrt 3 $
And the side $FG = AF\sin {30^ \circ }$
Putting the length of side $AF$ and value of $\sin {30^ \circ }$ we get,
$FG = 2 \times \dfrac{1}{2} = 1$
Now, the coordinate of vertex $C = \left( {2 + 1,\sqrt 3 } \right) = \left( {3,\sqrt 3 } \right)$. And vertex $D = \left( {2,2\sqrt 3 } \right)$, vertex ${\rm E} = \left( {0,2\sqrt 3 } \right)$ and vertex $F = \left( { - 1,\sqrt 3 } \right)$.
Now, we have two find the vector $\overrightarrow {CD} $ and we get this by subtracting the coordinates of vertex $C$ from the coordinates of vertex $D$. So,
$
\overrightarrow {CD} = \left( {2 - 3} \right)\hat i + \left( {2\sqrt 3 - \sqrt 3 } \right)\hat j \\
\overrightarrow {CD} = - \hat i + \sqrt 3 \hat j
$
Thus, option (C) is correct.
Note: Similarly, other sides vectors like $\overrightarrow {BC} ,\overrightarrow {DE} ,\overrightarrow {EF} $ and $\overrightarrow {FA} $ can be found by subtracting the coordinates of two vertices. Only care while subtracting the coordinates should be taken is subtract the coordinates of the first vertex from that of the second vertex. And put $\hat i$ corresponding to $x$ coordinates and $\hat j$ corresponding to $y$ coordinates.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.
