
$ABCD$ is a rectangle in which diagonal $AC$ bisects $\angle A$ as well as $\angle C$. Which of the following statements is/are true:
(i) $ABCD$ is a square
(ii) diagonal $BD$ bisects $\angle B$as well as $\angle D$
A) (i) only
B) (ii) only
C) (i) and (ii) both
D) None of these
Answer
576.3k+ views
Hint:By using the properties of a rectangle and the statement that the diagonal $AC$ bisects $\angle A$ as well as $\angle C$. We need to find out whether given two statements are true or false.
Complete step-by-step answer:
Now $ABCD$ is a rectangle whose diagonal $AC$ bisects $\angle A$ as well as $\angle C$.
This means
$AB = CD\,\,\,\,\& \,\,\,AD = BC$
[As opposite sides of rectangle are equal]
$\angle A = \angle B = \angle C = \angle D = {90^ \circ }$
[As all the angles of rectangles are right angles]
$\angle ACD = \angle ACB\,\,\,\,\& \,\,\,\,\,\angle CAD = \angle CAB\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (1)$
[As $AC$ bisects $\angle A$ as well as $\angle C$]
Now we need to check whether $ABCD$ is a square or not.
For that we just need to prove that the adjacent sides of the rectangle are equal.
Since $ABCD$ is a rectangle, its opposite sides are parallel which means $AB\left\| {CD} \right.$
With $AB\left\| {CD} \right.$ and transverse
$\angle CAB = \angle DCA\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (2)$[Alternate interior angles]
From equations (1) and (2) we get
$\angle CAD = \angle DCA\,$
Since sides opposite to equal angles are also equal
Therefore, $DC = AD$
As opposite sides of a rectangle are equal
$ \Rightarrow AB = BC = CD = DA\,\,\,\, \to (3)$
Hence $ABCD$ is a square
Now in order to check whether diagonal $BD$ bisects $\angle B$ as well as $\angle D$. We need to prove $\angle DBA = \angle DBC\,\,\,\& \,\,\angle CDB = \angle ADB$
In $\Delta BDA\,\,\& \,\,\Delta DBC$
$BD = DB\,$ [common]
$DA = BC\,$[proved above in equation (3)]
$BA = DC\,$[proved above in equation (1)]
Hence by using SSS congruence rule i.e. the corresponding sides are equal to each other
$\Delta BDA \cong \Delta DBC$
Since corresponding parts of congruent triangles are equal
Therefore, $\angle ABD = \angle CDB\,\,\,\,\,\,\,\, \to (4)$
Now $BC = AD\,$[sides of a square]
$ \Rightarrow \angle CDB = \angle CBD\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (5)$[opposite angles of equal sides are equal]
Hence by using (4) and (5) we get
$\angle ABD = \angle CBD$
So $BD$ bisects $\angle B$
Similarly $\angle BDA = \angle DBC\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (6)$[CPCT]
Also $\angle BDC = \angle DBC\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (7)\,$[$BC = CD$]
So from (6) and (7) we get
$\angle BDC = \angle BDA$
Hence $BD$ bisects $\angle D$
Therefore both equations (i) and (ii) are true.
So, the correct answer is “Option C”.
Note:in such questions we need to remember all the properties that the figure has. A property we did not use in this question was diagonals of a rectangle bisect each other. It may not have been used now but can be used in other questions. Hence we need to remember all the properties.
Complete step-by-step answer:
Now $ABCD$ is a rectangle whose diagonal $AC$ bisects $\angle A$ as well as $\angle C$.
This means
$AB = CD\,\,\,\,\& \,\,\,AD = BC$
[As opposite sides of rectangle are equal]
$\angle A = \angle B = \angle C = \angle D = {90^ \circ }$
[As all the angles of rectangles are right angles]
$\angle ACD = \angle ACB\,\,\,\,\& \,\,\,\,\,\angle CAD = \angle CAB\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (1)$
[As $AC$ bisects $\angle A$ as well as $\angle C$]
Now we need to check whether $ABCD$ is a square or not.
For that we just need to prove that the adjacent sides of the rectangle are equal.
Since $ABCD$ is a rectangle, its opposite sides are parallel which means $AB\left\| {CD} \right.$
With $AB\left\| {CD} \right.$ and transverse
$\angle CAB = \angle DCA\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (2)$[Alternate interior angles]
From equations (1) and (2) we get
$\angle CAD = \angle DCA\,$
Since sides opposite to equal angles are also equal
Therefore, $DC = AD$
As opposite sides of a rectangle are equal
$ \Rightarrow AB = BC = CD = DA\,\,\,\, \to (3)$
Hence $ABCD$ is a square
Now in order to check whether diagonal $BD$ bisects $\angle B$ as well as $\angle D$. We need to prove $\angle DBA = \angle DBC\,\,\,\& \,\,\angle CDB = \angle ADB$
In $\Delta BDA\,\,\& \,\,\Delta DBC$
$BD = DB\,$ [common]
$DA = BC\,$[proved above in equation (3)]
$BA = DC\,$[proved above in equation (1)]
Hence by using SSS congruence rule i.e. the corresponding sides are equal to each other
$\Delta BDA \cong \Delta DBC$
Since corresponding parts of congruent triangles are equal
Therefore, $\angle ABD = \angle CDB\,\,\,\,\,\,\,\, \to (4)$
Now $BC = AD\,$[sides of a square]
$ \Rightarrow \angle CDB = \angle CBD\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (5)$[opposite angles of equal sides are equal]
Hence by using (4) and (5) we get
$\angle ABD = \angle CBD$
So $BD$ bisects $\angle B$
Similarly $\angle BDA = \angle DBC\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (6)$[CPCT]
Also $\angle BDC = \angle DBC\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (7)\,$[$BC = CD$]
So from (6) and (7) we get
$\angle BDC = \angle BDA$
Hence $BD$ bisects $\angle D$
Therefore both equations (i) and (ii) are true.
So, the correct answer is “Option C”.
Note:in such questions we need to remember all the properties that the figure has. A property we did not use in this question was diagonals of a rectangle bisect each other. It may not have been used now but can be used in other questions. Hence we need to remember all the properties.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

