
ABCD is a rectangle formed by the points \[{\text{A}}( - 1,\; - 1)\] , \[{\text{B}}( - 1,\;4)\], C(5, 4) and \[{\text{D}}(5,\; - 1)\]. P, Q, R, S are the mid point of AB, BC, CD, DA. Is the Quadrilateral a square? A rectangle? Or a rhombus? Justify your answer.
Answer
520.8k+ views
Hint: Here, in this problem, we will use the midpoint formula to find the midpoints of the sides of the rectangle ABCD and then will find its diagonal to see whether it's rhombus or square.
Complete step-by-step answer:
\[\begin{align}
& \text{For QR; Here, }{{x}_{1}}=2\ ;\ {{y}_{1}}\ =\ 4 \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{x}_{2}}\ =\ 5\ ;\ {{y}_{2}}\ =\ 3\text{/}2 \\
\end{align}\]
Using distance formula
\[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
\[\text{QR}\ \text{=}\ \sqrt{{{(5-2)}^{2}}\ +\ {{\left( \dfrac{3}{2}-4 \right)}^{2}}}\]
\[=\sqrt{{{(3)}^{2}}+{{\left( \dfrac{3-8}{2} \right)}^{2}}}\]
\[=\sqrt{9+{{\left( \dfrac{-5}{2} \right)}^{2}}}\]
\[=\sqrt{9+\dfrac{25}{4}}=\sqrt{\dfrac{36+25}{4}}=\sqrt{\dfrac{61}{4}}\ \text{units}\text{.}\]
\[\begin{align}
& \text{For RS}\ \text{; Here, }{{x}_{1}}=5\ ;\ {{y}_{1}}\ =\ 3\text{/}2 \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{x}_{2}}\ =\ 2\ ;\ {{y}_{2}}\ =\ -1 \\
\end{align}\]
\[\text{RS = }\sqrt{{{(2-5)}^{2}}+{{(-1-3\text{/}2)}^{2}}}\]
\[=\sqrt{{{(-3)}^{2}}+{{\left( \dfrac{-2-3}{2} \right)}^{2}}}=\sqrt{9+{{\left( \dfrac{-5}{2} \right)}^{2}}}=\sqrt{9+\dfrac{25}{4}}\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sqrt{\dfrac{36+25}{4}}=\sqrt{\dfrac{61}{4}}\ \text{units}\text{.}\]
\[\begin{align}
& \text{For SP}\ \text{; Here, }{{x}_{1}}=2\ ;\ {{y}_{1}}\ =\ -1 \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{x}_{2}}\ =\ -1\ ;\ {{y}_{2}}\ =\ 3\text{/}2 \\
\end{align}\]
\[\text{SP}\ \text{=}\ \sqrt{{{(-1-2)}^{2}}+{{\left( \dfrac{3}{2}+1 \right)}^{2}}}\]
\[=\sqrt{{{(-3)}^{2}}+{{\left( \dfrac{3+2}{2} \right)}^{2}}}\]
\[=\sqrt{9+\dfrac{25}{4}}\]
\[=\sqrt{\dfrac{36+25}{4}}\]
\[=\sqrt{\dfrac{61}{4}}\ \text{units}\text{.}\]
Points S is the midpoint of AD. Applying midpoint formula:
Coordinates of S:-$\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2}-,\dfrac{{{y}_{1}}+{{y}_{2}}}{2}- \right)$
Here : ${{x}_{1}}=-1;\ {{y}_{1}}=-1$
${{x}_{2}}=5;\ {{y}_{2}}=-1$
Coordinates of $S=\left( \dfrac{-1+5}{2},\dfrac{-1-1}{2} \right)=\left( \dfrac{4}{2},\dfrac{-2}{2} \right)=\left( 2,-1 \right)$
Thus,
Vertices of quadrilateral PQRS are,
$P\left( \text{-1,}{\scriptstyle{}^{3}/{}_{2}} \right),Q\left( 2,4 \right),R\left( 5,{\scriptstyle{}^{3}/{}_{2}} \right)$ and $S\left( 2,-1 \right)$
Now, finding the sides of quadrilateral PQRS.
Applying distance formula;
\[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
For PQ; Here, ${{x}_{1}}=-1;\ {{y}_{1}}={\scriptstyle{}^{3}/{}_{2}}$
${{x}_{2}}=2;\ {{y}_{2}}=4$
PQ $=\sqrt{{{\left( 2-\left( -1 \right) \right)}^{2}}+{{\left( 4-{\scriptstyle{}^{3}/{}_{2}} \right)}^{2}}}$
$=\sqrt{{{\left( 2+1 \right)}^{2}}+{{\left( \dfrac{8-3}{2} \right)}^{2}}}$
$=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( \dfrac{5}{2} \right)}^{2}}}$
$=\sqrt{9+\dfrac{25}{4}}$
$=\sqrt{\dfrac{36+25}{4}}$
$=\sqrt{\dfrac{61}{4}}$ units.
Thus,
PQ = QR = RS = SP = $\sqrt{\dfrac{61}{4}}$ units.
$\therefore $ PQRS is a square, on a rhombus.
Now to check whether. PQRS is a square or a rhombus, we find the length of diagonals RP and SQ;
For RP:-${{x}_{1}}=-1;\ {{y}_{1}}={\scriptstyle{}^{3}/{}_{2}}$
${{x}_{2}}=5;\ {{y}_{2}}={\scriptstyle{}^{3}/{}_{2}}$
RP$=\sqrt{{{\left( 5+1 \right)}^{2}}+{{\left( \dfrac{3}{2}-\dfrac{3}{2} \right)}^{2}}}$
$=\sqrt{{{\left( 6 \right)}^{2}}+{{\left( 0 \right)}^{2}}}$
$\sqrt{{{6}^{2}}+0}$
6 units.
For SQ;$-{{x}_{1}}=2$ $;{{y}_{1}}=-1$
${{x}_{2}}=2$ $;{{y}_{2}}=4$
SQ$=\sqrt{{{\left( 2-2 \right)}^{2}}+{{\left( 4+1 \right)}^{2}}}$
$=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 5 \right)}^{2}}}$
$=\sqrt{{{\left( 5 \right)}^{2}}}=5$ units
Since RP $\ne $ SQ
$\therefore $ Diagonal of the quadrilateral are not equal.
So, PQRS is not a square.
$\therefore $ PQRS is Rhombus.
Note: In this type of problems, where we are asked to find whether the given point is a rectangle that will form a rhombus or a square, we have to use the midpoint formula and the distance formula to know the length of the sides and recognize the figure formed.
Complete step-by-step answer:

\[\begin{align}
& \text{For QR; Here, }{{x}_{1}}=2\ ;\ {{y}_{1}}\ =\ 4 \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{x}_{2}}\ =\ 5\ ;\ {{y}_{2}}\ =\ 3\text{/}2 \\
\end{align}\]
Using distance formula
\[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
\[\text{QR}\ \text{=}\ \sqrt{{{(5-2)}^{2}}\ +\ {{\left( \dfrac{3}{2}-4 \right)}^{2}}}\]
\[=\sqrt{{{(3)}^{2}}+{{\left( \dfrac{3-8}{2} \right)}^{2}}}\]
\[=\sqrt{9+{{\left( \dfrac{-5}{2} \right)}^{2}}}\]
\[=\sqrt{9+\dfrac{25}{4}}=\sqrt{\dfrac{36+25}{4}}=\sqrt{\dfrac{61}{4}}\ \text{units}\text{.}\]
\[\begin{align}
& \text{For RS}\ \text{; Here, }{{x}_{1}}=5\ ;\ {{y}_{1}}\ =\ 3\text{/}2 \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{x}_{2}}\ =\ 2\ ;\ {{y}_{2}}\ =\ -1 \\
\end{align}\]
\[\text{RS = }\sqrt{{{(2-5)}^{2}}+{{(-1-3\text{/}2)}^{2}}}\]
\[=\sqrt{{{(-3)}^{2}}+{{\left( \dfrac{-2-3}{2} \right)}^{2}}}=\sqrt{9+{{\left( \dfrac{-5}{2} \right)}^{2}}}=\sqrt{9+\dfrac{25}{4}}\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sqrt{\dfrac{36+25}{4}}=\sqrt{\dfrac{61}{4}}\ \text{units}\text{.}\]
\[\begin{align}
& \text{For SP}\ \text{; Here, }{{x}_{1}}=2\ ;\ {{y}_{1}}\ =\ -1 \\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{x}_{2}}\ =\ -1\ ;\ {{y}_{2}}\ =\ 3\text{/}2 \\
\end{align}\]
\[\text{SP}\ \text{=}\ \sqrt{{{(-1-2)}^{2}}+{{\left( \dfrac{3}{2}+1 \right)}^{2}}}\]
\[=\sqrt{{{(-3)}^{2}}+{{\left( \dfrac{3+2}{2} \right)}^{2}}}\]
\[=\sqrt{9+\dfrac{25}{4}}\]
\[=\sqrt{\dfrac{36+25}{4}}\]
\[=\sqrt{\dfrac{61}{4}}\ \text{units}\text{.}\]
Points S is the midpoint of AD. Applying midpoint formula:
Coordinates of S:-$\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2}-,\dfrac{{{y}_{1}}+{{y}_{2}}}{2}- \right)$
Here : ${{x}_{1}}=-1;\ {{y}_{1}}=-1$
${{x}_{2}}=5;\ {{y}_{2}}=-1$
Coordinates of $S=\left( \dfrac{-1+5}{2},\dfrac{-1-1}{2} \right)=\left( \dfrac{4}{2},\dfrac{-2}{2} \right)=\left( 2,-1 \right)$
Thus,
Vertices of quadrilateral PQRS are,
$P\left( \text{-1,}{\scriptstyle{}^{3}/{}_{2}} \right),Q\left( 2,4 \right),R\left( 5,{\scriptstyle{}^{3}/{}_{2}} \right)$ and $S\left( 2,-1 \right)$
Now, finding the sides of quadrilateral PQRS.
Applying distance formula;
\[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
For PQ; Here, ${{x}_{1}}=-1;\ {{y}_{1}}={\scriptstyle{}^{3}/{}_{2}}$
${{x}_{2}}=2;\ {{y}_{2}}=4$
PQ $=\sqrt{{{\left( 2-\left( -1 \right) \right)}^{2}}+{{\left( 4-{\scriptstyle{}^{3}/{}_{2}} \right)}^{2}}}$
$=\sqrt{{{\left( 2+1 \right)}^{2}}+{{\left( \dfrac{8-3}{2} \right)}^{2}}}$
$=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( \dfrac{5}{2} \right)}^{2}}}$
$=\sqrt{9+\dfrac{25}{4}}$
$=\sqrt{\dfrac{36+25}{4}}$
$=\sqrt{\dfrac{61}{4}}$ units.
Thus,
PQ = QR = RS = SP = $\sqrt{\dfrac{61}{4}}$ units.
$\therefore $ PQRS is a square, on a rhombus.
Now to check whether. PQRS is a square or a rhombus, we find the length of diagonals RP and SQ;
For RP:-${{x}_{1}}=-1;\ {{y}_{1}}={\scriptstyle{}^{3}/{}_{2}}$
${{x}_{2}}=5;\ {{y}_{2}}={\scriptstyle{}^{3}/{}_{2}}$
RP$=\sqrt{{{\left( 5+1 \right)}^{2}}+{{\left( \dfrac{3}{2}-\dfrac{3}{2} \right)}^{2}}}$
$=\sqrt{{{\left( 6 \right)}^{2}}+{{\left( 0 \right)}^{2}}}$
$\sqrt{{{6}^{2}}+0}$
6 units.
For SQ;$-{{x}_{1}}=2$ $;{{y}_{1}}=-1$
${{x}_{2}}=2$ $;{{y}_{2}}=4$
SQ$=\sqrt{{{\left( 2-2 \right)}^{2}}+{{\left( 4+1 \right)}^{2}}}$
$=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 5 \right)}^{2}}}$
$=\sqrt{{{\left( 5 \right)}^{2}}}=5$ units
Since RP $\ne $ SQ
$\therefore $ Diagonal of the quadrilateral are not equal.
So, PQRS is not a square.
$\therefore $ PQRS is Rhombus.
Note: In this type of problems, where we are asked to find whether the given point is a rectangle that will form a rhombus or a square, we have to use the midpoint formula and the distance formula to know the length of the sides and recognize the figure formed.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

List of National & International Important Days

Master Class 9 Science: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Discuss what these phrases mean to you A a yellow wood class 9 english CBSE

On an outline map of India show its neighbouring c class 9 social science CBSE
