
ABCD is a cyclic quadrilateral such that $\angle A = {\left( {4y + 20} \right)^\circ },\angle B = {\left( {3y - 5} \right)^\circ },\angle C = 4{x^\circ }$ and$\angle D = {\left( {7x + 5} \right)^\circ }$. Find the four angles.
Answer
578.4k+ views
Hint: Cyclic Quadrilateral is a quadrilateral whose all arms on verities lie on a single circle. Key concept to be applied here is that the sum of four angles is ${360^\circ }$.Also sum of opposite angles in a Cyclic Quadrilateral is ${180^\circ }$.
Complete step-by-step answer:
Let us assume ABCD is the cyclic quadrilateral, $\angle A = {\left( {4y + 20} \right)^\circ },\angle B = {\left( {3y - 5} \right)^\circ },\angle C = 4{x^\circ },\angle D = {\left( {7x + 5} \right)^\circ }$
We know that the addition of four angle of a quadrilateral = ${360^\circ }$
$
\therefore \angle A + \angle B + \angle C + \angle D = {360^\circ } \\
\Rightarrow 4y + {20^\circ } + 3y - {5^\circ } + 4{x^\circ } + 7x + {5^\circ } = {360^\circ } \\
\Rightarrow 7y + 11x = {360^\circ } - {20^\circ } \\
\Rightarrow 7y + 11x = {340^\circ }.............\left( I \right) \\
$
Also, the sum of opposite angles in a Cyclic Quadrilateral is ${180^\circ }$.
$\angle A + \angle C = {180^\circ }$ or $\angle B + \angle D = {180^\circ }$
$
\therefore 4y + 20 + 4x = {180^\circ } \\
\Rightarrow 4x + 4y = {160^\circ }............\left( {II} \right) \\
$
Now,
$
11x + 7y = 340.........(I) \times 4 \\
4x + 4y = 160..........\left( {II} \right) \times 7 \\
44x + 28y = 1360 \\
28x + 28y = 1120 \\
\Rightarrow 16x = 240 \\
\Rightarrow x = \dfrac{{240}}{{16}} \\
\Rightarrow x = 15 \\
$
Putting the value of x in the equation II, we will get the value of y as follows:
$
\Rightarrow 4x + 4y = 160 \\
\Rightarrow 4 \times 15 + 4y = 160 \\
\Rightarrow 60 + 4y = 160 \\
\Rightarrow 4y = 160 - 60 = 100 \\
\Rightarrow y = \dfrac{{100}}{4} = 25 \\
$
Now we will substitute the values of x and y to get all four angles as follows:
$
\angle A = 4y + 20 = 4 \times 25 + 20 = {120^\circ } \\
\angle B = 3y - 5 = 3 \times 25 - 5 = {70^\circ } \\
\angle C = 4x = 4 \times 15 = {60^\circ } \\
\angle D = 7x + 5 = 7 \times 15 + 5 = {110^\circ } \\
$
So, four angles of ABCD are ${120^\circ }, {70^\circ }, {60^\circ } and {110^\circ }.$
Note: An important property of a cyclic quadrilateral is that the sum of opposite angles is always equal to ${180^\circ }$. This property is used in the above problem. This property is useful in geometrical proofs and properties.
Complete step-by-step answer:
Let us assume ABCD is the cyclic quadrilateral, $\angle A = {\left( {4y + 20} \right)^\circ },\angle B = {\left( {3y - 5} \right)^\circ },\angle C = 4{x^\circ },\angle D = {\left( {7x + 5} \right)^\circ }$
We know that the addition of four angle of a quadrilateral = ${360^\circ }$
$
\therefore \angle A + \angle B + \angle C + \angle D = {360^\circ } \\
\Rightarrow 4y + {20^\circ } + 3y - {5^\circ } + 4{x^\circ } + 7x + {5^\circ } = {360^\circ } \\
\Rightarrow 7y + 11x = {360^\circ } - {20^\circ } \\
\Rightarrow 7y + 11x = {340^\circ }.............\left( I \right) \\
$
Also, the sum of opposite angles in a Cyclic Quadrilateral is ${180^\circ }$.
$\angle A + \angle C = {180^\circ }$ or $\angle B + \angle D = {180^\circ }$
$
\therefore 4y + 20 + 4x = {180^\circ } \\
\Rightarrow 4x + 4y = {160^\circ }............\left( {II} \right) \\
$
Now,
$
11x + 7y = 340.........(I) \times 4 \\
4x + 4y = 160..........\left( {II} \right) \times 7 \\
44x + 28y = 1360 \\
28x + 28y = 1120 \\
\Rightarrow 16x = 240 \\
\Rightarrow x = \dfrac{{240}}{{16}} \\
\Rightarrow x = 15 \\
$
Putting the value of x in the equation II, we will get the value of y as follows:
$
\Rightarrow 4x + 4y = 160 \\
\Rightarrow 4 \times 15 + 4y = 160 \\
\Rightarrow 60 + 4y = 160 \\
\Rightarrow 4y = 160 - 60 = 100 \\
\Rightarrow y = \dfrac{{100}}{4} = 25 \\
$
Now we will substitute the values of x and y to get all four angles as follows:
$
\angle A = 4y + 20 = 4 \times 25 + 20 = {120^\circ } \\
\angle B = 3y - 5 = 3 \times 25 - 5 = {70^\circ } \\
\angle C = 4x = 4 \times 15 = {60^\circ } \\
\angle D = 7x + 5 = 7 \times 15 + 5 = {110^\circ } \\
$
So, four angles of ABCD are ${120^\circ }, {70^\circ }, {60^\circ } and {110^\circ }.$
Note: An important property of a cyclic quadrilateral is that the sum of opposite angles is always equal to ${180^\circ }$. This property is used in the above problem. This property is useful in geometrical proofs and properties.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

