Answer
Verified
445.2k+ views
Hint: In this question remember that volume of toy can be found by Volume of cylinder – Volume of two hemispheres also remember to use formula of cylinder = $\pi {r^2}h$and volume of hemisphere = $\dfrac{2}{3}\pi {r^3}$, use this information to approach the solution.
Complete step-by-step answer:
According to the given information from a solid cylinder of radius 3.5 cm and 10 cm a shape of hemisphere with the same radius of cylinder
So, the dimensions we have are
Height of the cylinder = 10 cm
Radius of base of cylinder = 3.5 cm
We know that formula for volume of cylinder is given as; ${v_1} = \pi {r^2}h$ (equation 1)
Substituting the values in equation (1) we get
${v_1} = \dfrac{{22}}{7}{\left( {3.5} \right)^2} \times 10$
${v_1} = 385c{m^3}$
The radius of hemispherical cavity that we are taking out is same as that of base of cylinder that is r = 3.5 cm
We know that formula for volume of hemisphere is given as; ${v_2} = \dfrac{2}{3}\pi {r^3}$ (equation 2)
Substituting the values in equation (2) we get
${v_2} = \dfrac{2}{3} \times \dfrac{{22}}{7} \times {(3.5)^3}$
${v_2} = 89.83c{m^3}$
Now a wooden toy is made by scooping out a hemisphere of same radius from each end of a solid cylinder, there are two ends in a cylinder so two hemispheres are taken out from the cylinder to form a toy.
$Volume{\text{ }}of{\text{ }}toy = Volume{\text{ }}of{\text{ }}cylinder - 2 \times Volume{\text{ }}of{\text{ }}hemisphere$
So, substituting the values in the above equation we get
$Volume{\text{ }}of{\text{ }}toy = 385 - \left( {2 \times 89.83} \right)$
$ \Rightarrow $$Volume{\text{ }}of{\text{ }}toy = 205.34c{m^3}$
Therefore, the Volume of toy is equal to $205.34c{m^3}$
Note: The key concept while solving such problems is simply to have a grasp of the formulas of various conic sections. When a conic cavity is taken out from another conic section then it eventually results in reduced volume of the remaining conic and this is what is being used above.
Complete step-by-step answer:
According to the given information from a solid cylinder of radius 3.5 cm and 10 cm a shape of hemisphere with the same radius of cylinder
So, the dimensions we have are
Height of the cylinder = 10 cm
Radius of base of cylinder = 3.5 cm
We know that formula for volume of cylinder is given as; ${v_1} = \pi {r^2}h$ (equation 1)
Substituting the values in equation (1) we get
${v_1} = \dfrac{{22}}{7}{\left( {3.5} \right)^2} \times 10$
${v_1} = 385c{m^3}$
The radius of hemispherical cavity that we are taking out is same as that of base of cylinder that is r = 3.5 cm
We know that formula for volume of hemisphere is given as; ${v_2} = \dfrac{2}{3}\pi {r^3}$ (equation 2)
Substituting the values in equation (2) we get
${v_2} = \dfrac{2}{3} \times \dfrac{{22}}{7} \times {(3.5)^3}$
${v_2} = 89.83c{m^3}$
Now a wooden toy is made by scooping out a hemisphere of same radius from each end of a solid cylinder, there are two ends in a cylinder so two hemispheres are taken out from the cylinder to form a toy.
$Volume{\text{ }}of{\text{ }}toy = Volume{\text{ }}of{\text{ }}cylinder - 2 \times Volume{\text{ }}of{\text{ }}hemisphere$
So, substituting the values in the above equation we get
$Volume{\text{ }}of{\text{ }}toy = 385 - \left( {2 \times 89.83} \right)$
$ \Rightarrow $$Volume{\text{ }}of{\text{ }}toy = 205.34c{m^3}$
Therefore, the Volume of toy is equal to $205.34c{m^3}$
Note: The key concept while solving such problems is simply to have a grasp of the formulas of various conic sections. When a conic cavity is taken out from another conic section then it eventually results in reduced volume of the remaining conic and this is what is being used above.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE