
A well of diameter $4m$ is dug $21m$ deep. The earth taken out of it has been spread evenly all around it in the shape of a ring of width $3m$ to form an embankment. Find the height of the embankment.
Answer
516.6k+ views
Hint: Proceed the solution by using the condition that volume of earth is equal to volume of embankment. We know that volume of embankment $V = \pi ({R^2} - {r^2})h$ and volume of earth is $(v) = \pi {r^2}d$.
Here let us solve solution by gathering the data given to us, so here the
Diameter of well = $4m$
Radius of well $(r)$ = $2cm$ [Radius is half of the diameter]
Depth of earth $(d)$ = $21m$
We know that volume of earth as $(v) = \pi {r^2}d$
$ \Rightarrow v = \dfrac{{22}}{7} \times 2 \times 2 \times 21$
$ \Rightarrow v = 264{m^3}$
Given the width of embankment = $3m$
Outer radius of ring $(R)$ = $2 + 3 = 5m$
Let the height of embankment $h$
We know that volume of embankment $V = \pi ({R^2} - {r^2})h$
Here,
Volume of embankment = Volume of earth
$ \Rightarrow $$\
\pi ({R^2} - {r^2})h = \pi {r^2}d \\
\\
\ $
On substituting the values we get
$\
\Rightarrow \dfrac{{22}}{7} \times (25 - 4) \times h = 264 \\
\Rightarrow h = \dfrac{{264 \times 7}}{{22 \times 21}} \\
\Rightarrow h = 4 m \\
\ $
Therefore the height of embankment =$4m$
NOTE: Outer ring radius has to be calculated by using the inner radius which is used in the volume of embankment to find height.
Here let us solve solution by gathering the data given to us, so here the
Diameter of well = $4m$
Radius of well $(r)$ = $2cm$ [Radius is half of the diameter]
Depth of earth $(d)$ = $21m$
We know that volume of earth as $(v) = \pi {r^2}d$
$ \Rightarrow v = \dfrac{{22}}{7} \times 2 \times 2 \times 21$
$ \Rightarrow v = 264{m^3}$
Given the width of embankment = $3m$
Outer radius of ring $(R)$ = $2 + 3 = 5m$
Let the height of embankment $h$
We know that volume of embankment $V = \pi ({R^2} - {r^2})h$
Here,
Volume of embankment = Volume of earth
$ \Rightarrow $$\
\pi ({R^2} - {r^2})h = \pi {r^2}d \\
\\
\ $
On substituting the values we get
$\
\Rightarrow \dfrac{{22}}{7} \times (25 - 4) \times h = 264 \\
\Rightarrow h = \dfrac{{264 \times 7}}{{22 \times 21}} \\
\Rightarrow h = 4 m \\
\ $
Therefore the height of embankment =$4m$
NOTE: Outer ring radius has to be calculated by using the inner radius which is used in the volume of embankment to find height.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

