Answer
Verified
369.7k+ views
Hint- Draw the diagram of question and use value of trigonometric angles $\tan {30^0} =
\frac{1}{{\sqrt 3 }}$ and $\tan {60^0} = \sqrt 3 $ .
Let QR be the height of the tower (h meters) and RS be the height of flagstaff surmounted on
the tower (RS=5m). Let the point P lie on the horizontal plane at a distance of x meters from
the foot of the tower at point Q (PQ=x meters).
In $\vartriangle PQR$, the angle of elevation of the bottom of the flagstaff is ${30^0}$ .
$
\tan {30^0} = \dfrac{{QR}}{{PQ}} \\
\Rightarrow \dfrac{1}{{\sqrt 3 }} = \frac{h}{x} \\
\Rightarrow x = \sqrt 3 h.........\left( 1 \right) \\
$
In $\vartriangle PQS$, angle of elevation of the top of the flagstaff is ${60^0}$ .
$
\tan {60^0} = \dfrac{{QS}}{{PQ}} = \dfrac{{QR + RS}}{{PQ}} \\
\Rightarrow \sqrt 3 = \dfrac{{h + 5}}{x} \\
\Rightarrow x = \dfrac{{h + 5}}{{\sqrt 3 }}..........\left( 2 \right) \\
$
Eliminating x using (1) and (2) equation
$
\Rightarrow \sqrt 3 h = \dfrac{{h + 5}}{{\sqrt 3 }} \\
\Rightarrow 3h = h + 5 \\
\Rightarrow 2h = 5 \\
\Rightarrow h = 2.5m \\
$
So, the height of tower is 2.5 meters
Note- Whenever we face such types of problems we use some important points. Like draw
the figure of question with notify all points and distances then make the relation between
variables with the help of trigonometric angles then after eliminating x we can get the value
of the height of the tower.
\frac{1}{{\sqrt 3 }}$ and $\tan {60^0} = \sqrt 3 $ .
Let QR be the height of the tower (h meters) and RS be the height of flagstaff surmounted on
the tower (RS=5m). Let the point P lie on the horizontal plane at a distance of x meters from
the foot of the tower at point Q (PQ=x meters).
In $\vartriangle PQR$, the angle of elevation of the bottom of the flagstaff is ${30^0}$ .
$
\tan {30^0} = \dfrac{{QR}}{{PQ}} \\
\Rightarrow \dfrac{1}{{\sqrt 3 }} = \frac{h}{x} \\
\Rightarrow x = \sqrt 3 h.........\left( 1 \right) \\
$
In $\vartriangle PQS$, angle of elevation of the top of the flagstaff is ${60^0}$ .
$
\tan {60^0} = \dfrac{{QS}}{{PQ}} = \dfrac{{QR + RS}}{{PQ}} \\
\Rightarrow \sqrt 3 = \dfrac{{h + 5}}{x} \\
\Rightarrow x = \dfrac{{h + 5}}{{\sqrt 3 }}..........\left( 2 \right) \\
$
Eliminating x using (1) and (2) equation
$
\Rightarrow \sqrt 3 h = \dfrac{{h + 5}}{{\sqrt 3 }} \\
\Rightarrow 3h = h + 5 \\
\Rightarrow 2h = 5 \\
\Rightarrow h = 2.5m \\
$
So, the height of tower is 2.5 meters
Note- Whenever we face such types of problems we use some important points. Like draw
the figure of question with notify all points and distances then make the relation between
variables with the help of trigonometric angles then after eliminating x we can get the value
of the height of the tower.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE