Answer
Verified
438k+ views
Hint:
The formula for writing tangent of an angle is
\[\tan \theta =\dfrac{perpendicular}{base}\] .
Another important formula that may be used in the question is the cosine rule which is
\[{{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B\]
(Where a, b and c are the side lengths of the triangle and B is the angle opposite to the side length b)
Complete step by step answer:
As mentioned in the question, the figure would look like the below picture
(Where the height of the vertical pole is taken to be as ‘h’)
Let the distance between A and O be x and the distance between B and O be y.
Now, firstly using the tangent formula in triangle with \[\alpha \] angle as follows
\[\begin{align}
& \tan \alpha =\dfrac{h}{x} \\
& x=h\cot \alpha \ \ \ \ \ ...(1) \\
\end{align}\]
Secondly, using the tangent formula again in the triangle with \[\beta \] angle as follows
\[\begin{align}
& \tan \beta =\dfrac{h}{y} \\
& y=h\cot \beta \ \ \ \ \ ...(2) \\
\end{align}\]
Now, using the cosine formula in the \[\vartriangle AOB\]as follows
\[{{d}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\cos \gamma \ \ \ \ \ ...(a)\]
Now, putting equations (1) and (2) in equation (a) as follows, we get
\[\begin{align}
& {{d}^{2}}={{h}^{2}}{{\cot }^{2}}\alpha +{{h}^{2}}{{\cot }^{2}}\beta -2(h\cot \alpha )(h\cot \beta )\cos \gamma \\
& {{d}^{2}}={{h}^{2}}{{\cot }^{2}}\alpha +{{h}^{2}}{{\cot }^{2}}\beta -2{{h}^{2}}\cdot \cot \alpha \cdot \cot \beta \cdot \cos \gamma \\
& {{d}^{2}}={{h}^{2}}\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right) \\
& {{h}^{2}}=\dfrac{{{d}^{2}}}{\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right)} \\
\end{align}\]
Now, on taking square root on both the sides, we get the height of the vertical pole that is standing on point O is
\[h=\dfrac{d}{{{\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right)}^{\dfrac{1}{2}}}}\]
Note:
The figure in this question is very tricky and is difficult to visualize it at first. Hence, the students can make an error while drawing the figure and then end up making a mistake and they would get to the correct solution. We can also solve the sides of the triangle using sine rule and then convert into cosine form.
The formula for writing tangent of an angle is
\[\tan \theta =\dfrac{perpendicular}{base}\] .
Another important formula that may be used in the question is the cosine rule which is
\[{{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B\]
(Where a, b and c are the side lengths of the triangle and B is the angle opposite to the side length b)
Complete step by step answer:
As mentioned in the question, the figure would look like the below picture
(Where the height of the vertical pole is taken to be as ‘h’)
Let the distance between A and O be x and the distance between B and O be y.
Now, firstly using the tangent formula in triangle with \[\alpha \] angle as follows
\[\begin{align}
& \tan \alpha =\dfrac{h}{x} \\
& x=h\cot \alpha \ \ \ \ \ ...(1) \\
\end{align}\]
Secondly, using the tangent formula again in the triangle with \[\beta \] angle as follows
\[\begin{align}
& \tan \beta =\dfrac{h}{y} \\
& y=h\cot \beta \ \ \ \ \ ...(2) \\
\end{align}\]
Now, using the cosine formula in the \[\vartriangle AOB\]as follows
\[{{d}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\cos \gamma \ \ \ \ \ ...(a)\]
Now, putting equations (1) and (2) in equation (a) as follows, we get
\[\begin{align}
& {{d}^{2}}={{h}^{2}}{{\cot }^{2}}\alpha +{{h}^{2}}{{\cot }^{2}}\beta -2(h\cot \alpha )(h\cot \beta )\cos \gamma \\
& {{d}^{2}}={{h}^{2}}{{\cot }^{2}}\alpha +{{h}^{2}}{{\cot }^{2}}\beta -2{{h}^{2}}\cdot \cot \alpha \cdot \cot \beta \cdot \cos \gamma \\
& {{d}^{2}}={{h}^{2}}\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right) \\
& {{h}^{2}}=\dfrac{{{d}^{2}}}{\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right)} \\
\end{align}\]
Now, on taking square root on both the sides, we get the height of the vertical pole that is standing on point O is
\[h=\dfrac{d}{{{\left( {{\cot }^{2}}\alpha +{{\cot }^{2}}\beta -2\cot \alpha \cdot \cot \beta \cdot \cos \gamma \right)}^{\dfrac{1}{2}}}}\]
Note:
The figure in this question is very tricky and is difficult to visualize it at first. Hence, the students can make an error while drawing the figure and then end up making a mistake and they would get to the correct solution. We can also solve the sides of the triangle using sine rule and then convert into cosine form.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE