Answer
Verified
484.2k+ views
Hint: Approach the solution by applying the conditions to the assumed value.
In a two digit number, let us consider ten’s digit place as $x$ and unit’s digit place as $y$
Therefore two digit number will be = $10x + y$
Given product of the two digits = $12$
$\therefore $$xy = 12$
$ \Rightarrow y = \dfrac{{12}}{x} \to (1)$
And also added $36$ to the two digit number
$ \Rightarrow 10x + y + 36$
Here after adding $36$ to the two digit number, the digits interchanges the places
$\
\Rightarrow 10x + y + 36 = 10y + x \\
\Rightarrow 9x - 9y + 36 = 0 \\
\Rightarrow x - y + 4 = 0 \to (2) \\
\ $
From $(1)\& (2)$ we get
$\
\Rightarrow x + 4 = \dfrac{{12}}{x} \\
\Rightarrow {x^2} + 4x - 12 = 0 \\
\Rightarrow (x + 6)(x - 2) = 0 \\
\ $
Here $x = - 6$ and $x = 2$ [Based on the given condition and the condition we have $x = - 6$ value is rejected.]
Now on rejecting, x=-6, we have x value as $x = 2$
$\
\Rightarrow y = \dfrac{{12}}{x} \\
\Rightarrow y = \dfrac{{12}}{2} \\
\Rightarrow y = 6 \\
\ $
Here the required two digit number is $10x + y$
So, on substituting x, y values we get the number as
$ \Rightarrow 10(2) + 6 = 26$
Therefore the required two digit number is $26$.
NOTE: Here we should not ignore the condition of interchanging the places of digits. And here we have to consider the x value based on the conditions given (according to the solution).
In a two digit number, let us consider ten’s digit place as $x$ and unit’s digit place as $y$
Therefore two digit number will be = $10x + y$
Given product of the two digits = $12$
$\therefore $$xy = 12$
$ \Rightarrow y = \dfrac{{12}}{x} \to (1)$
And also added $36$ to the two digit number
$ \Rightarrow 10x + y + 36$
Here after adding $36$ to the two digit number, the digits interchanges the places
$\
\Rightarrow 10x + y + 36 = 10y + x \\
\Rightarrow 9x - 9y + 36 = 0 \\
\Rightarrow x - y + 4 = 0 \to (2) \\
\ $
From $(1)\& (2)$ we get
$\
\Rightarrow x + 4 = \dfrac{{12}}{x} \\
\Rightarrow {x^2} + 4x - 12 = 0 \\
\Rightarrow (x + 6)(x - 2) = 0 \\
\ $
Here $x = - 6$ and $x = 2$ [Based on the given condition and the condition we have $x = - 6$ value is rejected.]
Now on rejecting, x=-6, we have x value as $x = 2$
$\
\Rightarrow y = \dfrac{{12}}{x} \\
\Rightarrow y = \dfrac{{12}}{2} \\
\Rightarrow y = 6 \\
\ $
Here the required two digit number is $10x + y$
So, on substituting x, y values we get the number as
$ \Rightarrow 10(2) + 6 = 26$
Therefore the required two digit number is $26$.
NOTE: Here we should not ignore the condition of interchanging the places of digits. And here we have to consider the x value based on the conditions given (according to the solution).
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE