# A triangle having vertices as $P\left( \cos \alpha ,\sin \alpha \right),Q\left( \cos \beta ,\sin \beta \right),R\left( \cos \gamma ,\sin \gamma \right)$, whose orthocentre is $\left( 0,0 \right)$. Then, the value of $\cos \left( \alpha -\beta \right)+\cos \left( \beta -\gamma \right)+\cos \left( \gamma -\alpha \right)$ is

A. $\dfrac{-3}{2}$

B. $\dfrac{-1}{2}$

C. $\dfrac{1}{2}$

D. $\dfrac{3}{2}$

Last updated date: 23rd Mar 2023

•

Total views: 307.5k

•

Views today: 7.85k

Answer

Verified

307.5k+ views

Hint: The centroid of the triangle divides the line joining orthocentre and the circumcentre in the ratio \[2:1\].

The given vertices of the triangle are \[P(\cos \alpha ,\sin \alpha ),Q\left( \cos \beta ,\sin \beta \right)\] and \[R\left( \cos \gamma ,\sin \gamma \right)\].

Now, we will consider the circumcircle of the triangle.

To find the equation of the circumcircle , we will see the vertices of the triangle.

By observation , we can conclude that all the vertices of the triangle satisfy the equation \[{{x}^{2}}+{{y}^{2}}=1\]

So , the equation of the circumcircle will be \[{{x}^{2}}+{{y}^{2}}=1......(i)\]

Now , we know the general equation of circle with centre at \[(a,b)\] and radius \[r\] is given as

\[{{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}\]

Compared with equation\[(i)\], we can say that the centre of the circle represented by equation \[(i)\] is \[(0,0)\] and radius is \[1\] units.

So, the centre of the circumcircle is \[(0,0)\] and hence the circumcentre is \[(0,0)\].

Now, we know the centroid of the triangle divides the line joining orthocentre and the circumcentre in the ratio \[2:1\].

Now, in the question it is given that the orthocentre of \[\vartriangle ABC\] is \[(0,0)\] and from equation\[(i)\] we get that the circumcentre is also \[(0,0)\].

So , centroid is also \[(0,0)\].

We know , if a triangle has vertices \[\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)\]and \[\left( {{x}_{3}},{{y}_{3}} \right)\] then , its centroid is given as

\[\left( \left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right),\left( \dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) \right)\]

So , \[\left( \left( \dfrac{\cos \alpha +\cos \beta +\cos \gamma }{3} \right),\left( \dfrac{\sin \alpha +\sin \beta +\sin \gamma }{3} \right) \right)=\left( 0,0 \right)\]

Now,

\[\begin{align}

& \dfrac{\cos \alpha +\cos \beta +\cos \gamma }{3}=0 \\

& \Rightarrow \cos \alpha +\cos \beta +\cos \gamma =0 \\

\end{align}\]

\[\Rightarrow \cos \alpha +\cos \beta =-\cos \gamma \]

Now , we will square both sides .

On squaring on both the sides, we get

\[\Rightarrow {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +2\cos \alpha \cos \beta ={{\cos }^{2}}\gamma ......(ii)\]

Again , we have \[\dfrac{\sin \alpha +\sin \beta +\sin \gamma }{3}=0\]

\[\Rightarrow \sin \alpha +\sin \beta +\sin \gamma =0\]

\[\Rightarrow \sin \alpha +\sin \beta =-\sin \gamma \]

Now , we will square both sides .

On squaring on both the sides, we get

\[\Rightarrow {{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +2\sin \alpha \sin \beta ={{\sin }^{2}}\gamma .......(iii)\]

Adding \[(ii)\]and \[(iii)\] we get ,\[\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)+\left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right)+2\left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)=\left( {{\cos }^{2}}\gamma +{{\sin }^{2}}\gamma \right)\]

We know , \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and \[\cos A\cos B+\sin A\sin B=\cos (A-B)\] .

So , \[\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)+\left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right)+2\left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)=\left( {{\cos }^{2}}\gamma +{{\sin }^{2}}\gamma \right)\]can be written as \[1+1+2\left( \cos \left( \alpha -\beta \right) \right)=1\]

\[\Rightarrow 2\cos \left( \alpha -\beta \right)=-1\]

\[\Rightarrow \cos \left( \alpha -\beta \right)=\dfrac{-1}{2}........(iv)\]

Now , by symmetry we can say that

\[\cos \left( \beta -\gamma \right)=\dfrac{-1}{2}......(v)\]

And \[\cos \left( \gamma -\alpha \right)=\dfrac{-1}{2}.......(vi)\]

Adding \[(iv),(v)\]and \[(vi)\], we get

\[\begin{align}

& \cos \left( \alpha -\beta \right)+\cos \left( \beta -\alpha \right)+\cos \left( \gamma -\alpha \right)=\left( \dfrac{-1}{2} \right)+\left( \dfrac{-1}{2} \right)+\left( \dfrac{-1}{2} \right) \\

& \Rightarrow \cos \left( \alpha -\beta \right)+\cos \left( \beta -\alpha \right)+\cos \left( \gamma -\alpha \right)=\dfrac{-3}{2} \\

\end{align}\]

So , the value of $\cos \left( \alpha -\beta \right)+\cos \left( \beta -\gamma \right)+\cos \left( \gamma -\alpha \right)$ is equal to \[\dfrac{-3}{2}\].

Option (a) \[\dfrac{-3}{2}\] is correct answer

Note: Always remember that the centroid divides the line joining orthocentre and circumcentre in the ratio \[2:1\] and not \[1:2\]. Students often get confused and make mistakes.

The given vertices of the triangle are \[P(\cos \alpha ,\sin \alpha ),Q\left( \cos \beta ,\sin \beta \right)\] and \[R\left( \cos \gamma ,\sin \gamma \right)\].

Now, we will consider the circumcircle of the triangle.

To find the equation of the circumcircle , we will see the vertices of the triangle.

By observation , we can conclude that all the vertices of the triangle satisfy the equation \[{{x}^{2}}+{{y}^{2}}=1\]

So , the equation of the circumcircle will be \[{{x}^{2}}+{{y}^{2}}=1......(i)\]

Now , we know the general equation of circle with centre at \[(a,b)\] and radius \[r\] is given as

\[{{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}\]

Compared with equation\[(i)\], we can say that the centre of the circle represented by equation \[(i)\] is \[(0,0)\] and radius is \[1\] units.

So, the centre of the circumcircle is \[(0,0)\] and hence the circumcentre is \[(0,0)\].

Now, we know the centroid of the triangle divides the line joining orthocentre and the circumcentre in the ratio \[2:1\].

Now, in the question it is given that the orthocentre of \[\vartriangle ABC\] is \[(0,0)\] and from equation\[(i)\] we get that the circumcentre is also \[(0,0)\].

So , centroid is also \[(0,0)\].

We know , if a triangle has vertices \[\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)\]and \[\left( {{x}_{3}},{{y}_{3}} \right)\] then , its centroid is given as

\[\left( \left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right),\left( \dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) \right)\]

So , \[\left( \left( \dfrac{\cos \alpha +\cos \beta +\cos \gamma }{3} \right),\left( \dfrac{\sin \alpha +\sin \beta +\sin \gamma }{3} \right) \right)=\left( 0,0 \right)\]

Now,

\[\begin{align}

& \dfrac{\cos \alpha +\cos \beta +\cos \gamma }{3}=0 \\

& \Rightarrow \cos \alpha +\cos \beta +\cos \gamma =0 \\

\end{align}\]

\[\Rightarrow \cos \alpha +\cos \beta =-\cos \gamma \]

Now , we will square both sides .

On squaring on both the sides, we get

\[\Rightarrow {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +2\cos \alpha \cos \beta ={{\cos }^{2}}\gamma ......(ii)\]

Again , we have \[\dfrac{\sin \alpha +\sin \beta +\sin \gamma }{3}=0\]

\[\Rightarrow \sin \alpha +\sin \beta +\sin \gamma =0\]

\[\Rightarrow \sin \alpha +\sin \beta =-\sin \gamma \]

Now , we will square both sides .

On squaring on both the sides, we get

\[\Rightarrow {{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +2\sin \alpha \sin \beta ={{\sin }^{2}}\gamma .......(iii)\]

Adding \[(ii)\]and \[(iii)\] we get ,\[\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)+\left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right)+2\left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)=\left( {{\cos }^{2}}\gamma +{{\sin }^{2}}\gamma \right)\]

We know , \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and \[\cos A\cos B+\sin A\sin B=\cos (A-B)\] .

So , \[\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right)+\left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right)+2\left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)=\left( {{\cos }^{2}}\gamma +{{\sin }^{2}}\gamma \right)\]can be written as \[1+1+2\left( \cos \left( \alpha -\beta \right) \right)=1\]

\[\Rightarrow 2\cos \left( \alpha -\beta \right)=-1\]

\[\Rightarrow \cos \left( \alpha -\beta \right)=\dfrac{-1}{2}........(iv)\]

Now , by symmetry we can say that

\[\cos \left( \beta -\gamma \right)=\dfrac{-1}{2}......(v)\]

And \[\cos \left( \gamma -\alpha \right)=\dfrac{-1}{2}.......(vi)\]

Adding \[(iv),(v)\]and \[(vi)\], we get

\[\begin{align}

& \cos \left( \alpha -\beta \right)+\cos \left( \beta -\alpha \right)+\cos \left( \gamma -\alpha \right)=\left( \dfrac{-1}{2} \right)+\left( \dfrac{-1}{2} \right)+\left( \dfrac{-1}{2} \right) \\

& \Rightarrow \cos \left( \alpha -\beta \right)+\cos \left( \beta -\alpha \right)+\cos \left( \gamma -\alpha \right)=\dfrac{-3}{2} \\

\end{align}\]

So , the value of $\cos \left( \alpha -\beta \right)+\cos \left( \beta -\gamma \right)+\cos \left( \gamma -\alpha \right)$ is equal to \[\dfrac{-3}{2}\].

Option (a) \[\dfrac{-3}{2}\] is correct answer

Note: Always remember that the centroid divides the line joining orthocentre and circumcentre in the ratio \[2:1\] and not \[1:2\]. Students often get confused and make mistakes.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE