
A toy is in the form of a cone mounted on a hemisphere of radius 3.5 cm. The total height of the toy is 15.5 cm. find the total surface area and the volume of the toy.
Answer
456.7k+ views
Hint: In this particular question first draw the pictorial representation it will give us a clear picture of what we have to find out then use the concept that the total surface area of the toy is the sum of the lateral surface area of the cone and the curved surface area of the hemisphere, so use these concepts to reach the solution of the question.
Complete step by step answer:
Given data:
Height of the toy = 15.5 cm.
Radius of the hemisphere = 3.5 cm, as shown in the above figure.
From the figure we can say that the radius of cone = radius of the hemisphere = 3.5 cm
Height of the cone (h) = height of the toy – radius of the hemisphere.
So, the height of the cone (h) = 15.5 – 3.5 = 12 cm.
Now as we know that the slant height of the cone is given as
Slant height (l) = $\sqrt {{{\left( {{\text{height of the cone}}} \right)}^2} + {{\left( {{\text{radius of the cone}}} \right)}^2}} $
Now substitute the values we have,
Slant height (l) = $\sqrt {{{\left( {{\text{12}}} \right)}^2} + {{\left( {{\text{3}}{\text{.5}}} \right)}^2}} = \sqrt {144 + 12.25} = \sqrt {156.25} = 12.5$cm.
Now as we know that the lateral surface area (LSA) of the cone is given as,
LSA = $\pi rl$ square units, where r and l are the radius and the slant height of the cone.
$ \Rightarrow {\text{LSA}} = \dfrac{{22}}{7}\left( {3.5} \right)\left( {12.5} \right) = 137.5$ ${cm}^2$.
Now as we know that the curved surface area (CSA) of the hemisphere is $2\pi {r^2}$ where r is the radius of the hemisphere.
Therefore, CSA = $2\left( {\dfrac{{22}}{7}} \right){\left( {3.5} \right)^2} = 77$ ${cm}^2$.
So, the total surface area of the toy is the sum of the lateral surface area of the cone and the curved surface area of the hemisphere.
Therefore, the total surface area (TSA) of the toy = LSA of the cone + CSA of the hemisphere.
Therefore, the total surface area (TSA) of the toy = 137.5 + 77 = 214.5 ${cm}^2$.
Now as we know that the volume of the cone = $\dfrac{1}{3}\pi {r^2}h$ cubic units, where r and h are the radius and the height of the cone.
And the volume of the hemisphere = $\dfrac{2}{3}\pi {r^3}$ cubic cm, where r is the radius of the hemisphere.
So the total volume of the toy = volume of the cone + volume of the hemisphere.
So the total volume of the toy = $\dfrac{1}{3}\pi {r^2}h$ + $\dfrac{2}{3}\pi {r^3}$ ${cm}^3$.
Now substitute the values we have,
So the total volume of the toy is,
$ \Rightarrow \dfrac{1}{3}\left( {\dfrac{{22}}{7}} \right){\left( {3.5} \right)^2}\left( {12} \right) + \dfrac{2}{3}\left( {\dfrac{{22}}{7}} \right){\left( {3.5} \right)^3} = 154 + 89.833 = 243.83$ ${cm}^3$.
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of the lateral surface area of the cone and the curved surface area of the hemisphere which is all stated above and also recall the volume of the cone and the volume of the hemisphere which is also stated above.
Complete step by step answer:

Given data:
Height of the toy = 15.5 cm.
Radius of the hemisphere = 3.5 cm, as shown in the above figure.
From the figure we can say that the radius of cone = radius of the hemisphere = 3.5 cm
Height of the cone (h) = height of the toy – radius of the hemisphere.
So, the height of the cone (h) = 15.5 – 3.5 = 12 cm.
Now as we know that the slant height of the cone is given as
Slant height (l) = $\sqrt {{{\left( {{\text{height of the cone}}} \right)}^2} + {{\left( {{\text{radius of the cone}}} \right)}^2}} $
Now substitute the values we have,
Slant height (l) = $\sqrt {{{\left( {{\text{12}}} \right)}^2} + {{\left( {{\text{3}}{\text{.5}}} \right)}^2}} = \sqrt {144 + 12.25} = \sqrt {156.25} = 12.5$cm.
Now as we know that the lateral surface area (LSA) of the cone is given as,
LSA = $\pi rl$ square units, where r and l are the radius and the slant height of the cone.
$ \Rightarrow {\text{LSA}} = \dfrac{{22}}{7}\left( {3.5} \right)\left( {12.5} \right) = 137.5$ ${cm}^2$.
Now as we know that the curved surface area (CSA) of the hemisphere is $2\pi {r^2}$ where r is the radius of the hemisphere.
Therefore, CSA = $2\left( {\dfrac{{22}}{7}} \right){\left( {3.5} \right)^2} = 77$ ${cm}^2$.
So, the total surface area of the toy is the sum of the lateral surface area of the cone and the curved surface area of the hemisphere.
Therefore, the total surface area (TSA) of the toy = LSA of the cone + CSA of the hemisphere.
Therefore, the total surface area (TSA) of the toy = 137.5 + 77 = 214.5 ${cm}^2$.
Now as we know that the volume of the cone = $\dfrac{1}{3}\pi {r^2}h$ cubic units, where r and h are the radius and the height of the cone.
And the volume of the hemisphere = $\dfrac{2}{3}\pi {r^3}$ cubic cm, where r is the radius of the hemisphere.
So the total volume of the toy = volume of the cone + volume of the hemisphere.
So the total volume of the toy = $\dfrac{1}{3}\pi {r^2}h$ + $\dfrac{2}{3}\pi {r^3}$ ${cm}^3$.
Now substitute the values we have,
So the total volume of the toy is,
$ \Rightarrow \dfrac{1}{3}\left( {\dfrac{{22}}{7}} \right){\left( {3.5} \right)^2}\left( {12} \right) + \dfrac{2}{3}\left( {\dfrac{{22}}{7}} \right){\left( {3.5} \right)^3} = 154 + 89.833 = 243.83$ ${cm}^3$.
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of the lateral surface area of the cone and the curved surface area of the hemisphere which is all stated above and also recall the volume of the cone and the volume of the hemisphere which is also stated above.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
The aviation fuel used in the engines of jet airplanes class 10 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Why is it 530 pm in india when it is 1200 afternoon class 10 social science CBSE

What is the full form of POSCO class 10 social science CBSE

Draw a labelled diagram of the human digestive system class 10 biology CBSE

What is potential and actual resources
