
A town’s population increased by 1200 people, and then decreased 11 percent. The town had 32 less people than it did before the 1200 increase. Find the original population.
A) 10000
B) 11000
C) 12000
D) 13000
Answer
608.4k+ views
Hint: First assume that the original population of the town is x. Now form an equation according to the conditions given in the question and then solve it to find the value of x.
Complete step-by-step answer:
Let us assume that the original population of the town is x.
Now it is given in the question that the population increased by 1200 people.
So the increased population will be x+1200.
After increasing, the population decreased by 11 percent.
11 percent of x+1200 will be,
$\left( x+1200 \right)\times \dfrac{11}{100}$
Therefore the population becomes,
$\left( x+1200 \right)-\left( x+1200 \right)\times \dfrac{11}{100}$
Now it is given in the question that the town had 32 less people than it did before the 1200 increase.
Therefore,
$\left( x+1200 \right)-\left( x+1200 \right)\times \dfrac{11}{100}=x-32....(1)$
Now we will solve the equation (1) to find out the value of x.
Let us multiply both sides of the equation by 100.
$\Rightarrow 100\left( x+1200 \right)-11\left( x+1200 \right)=100\left( x-32 \right)$
$\Rightarrow 89\left( x+1200 \right)=100x-3200$
$\Rightarrow 89x+106800=100x-3200$
Now we will take all the terms with x on the left hand side and all the constant terms on the right hand side. Therefore,
$\Rightarrow 89x-100x=-3200-106800$
$\Rightarrow -11x=-110000$
Now we can cancel out the negative terms from both sides.
$\Rightarrow 11x=110000$
Now we will divide both sides of the equation by 11. Therefore,
$\Rightarrow x=\dfrac{110000}{11}$
$\Rightarrow x=10000$
Hence, the original population is 10000 people.
Therefore, option (A) is correct.
Note: Alternatively, we can solve this problem by cross checking the options. Only option (A) is satisfying all the conditions given in the question. Therefore, option (A) is correct.
Complete step-by-step answer:
Let us assume that the original population of the town is x.
Now it is given in the question that the population increased by 1200 people.
So the increased population will be x+1200.
After increasing, the population decreased by 11 percent.
11 percent of x+1200 will be,
$\left( x+1200 \right)\times \dfrac{11}{100}$
Therefore the population becomes,
$\left( x+1200 \right)-\left( x+1200 \right)\times \dfrac{11}{100}$
Now it is given in the question that the town had 32 less people than it did before the 1200 increase.
Therefore,
$\left( x+1200 \right)-\left( x+1200 \right)\times \dfrac{11}{100}=x-32....(1)$
Now we will solve the equation (1) to find out the value of x.
Let us multiply both sides of the equation by 100.
$\Rightarrow 100\left( x+1200 \right)-11\left( x+1200 \right)=100\left( x-32 \right)$
$\Rightarrow 89\left( x+1200 \right)=100x-3200$
$\Rightarrow 89x+106800=100x-3200$
Now we will take all the terms with x on the left hand side and all the constant terms on the right hand side. Therefore,
$\Rightarrow 89x-100x=-3200-106800$
$\Rightarrow -11x=-110000$
Now we can cancel out the negative terms from both sides.
$\Rightarrow 11x=110000$
Now we will divide both sides of the equation by 11. Therefore,
$\Rightarrow x=\dfrac{110000}{11}$
$\Rightarrow x=10000$
Hence, the original population is 10000 people.
Therefore, option (A) is correct.
Note: Alternatively, we can solve this problem by cross checking the options. Only option (A) is satisfying all the conditions given in the question. Therefore, option (A) is correct.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Full form of STD, ISD and PCO

What are gulf countries and why they are called Gulf class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

