The number of solutions in \[x \in [0,2\pi ]\] for which $|\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} - \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} | = 1$ is
A) 4
B) 2
C) 6
D) 8
Answer
Verified
476.7k+ views
Hint: This is a particular problem of trigonometry where we have to all the value of \[x \in [0,2\pi ]\]
So we first solve modulus function so if $|x| = a$ then it become $x = \pm a$ and we use some trigonometric relation
$1.{\cos ^2}x - {\sin ^2}x = \cos 2x$
$2.{\sin ^2}x + {\cos ^2}x = 1$ and we rearrange the whole equation by squaring both sides and after that we use these formulas to find our answer.
Complete step-by-step answer:
Step 1. Solve modulus function first
$\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} - \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} = \pm 1$
Now doing rearrangements we get
$\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} = \pm 1 + \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now by taking square both side we get
${(\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} )^2} = {( \pm 1 + \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} )^2}$
Now ${(a \pm b)^2} = {a^2} + {b^2} \pm 2ab$
By using this we can write
$2{\sin ^4}x + 18{\cos ^2}x = 1 + 2{\cos ^4}x + 18{\sin ^2}x \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now rearranging this equation
$2{\sin ^4}x - 2{\cos ^4}x + 18{\cos ^2}x - 18{\sin ^2}x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now use some formula
${a^2} - {b^2} = (a - b)(a + b)$ and ${\cos ^2}x - {\sin ^2}x = \cos 2x$
From this we get
$2({\sin ^2}x - {\cos ^2}x)({\sin ^2}x + {\cos ^2}x) + 18({\cos ^2}x - {\sin ^2}x) = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
As we know ${\sin ^2}x + {\cos ^2}x = 1$
Now $ - 2\cos 2x + 18\cos 2x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
From this we can write
$16\cos 2x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now we use $2{\cos ^2}x = 1 + \cos 2x$ and $2{\sin ^2}x = 1 - \cos 2x$
$16\cos 2x = 1 \pm 2\sqrt {\dfrac{1}{2}{{(\cos 2x + 1)}^2} + 9(1 - \cos 2x)} $
Now again we do rearrangements of terms
$16\cos 2x - 1 = \pm 2\sqrt {\dfrac{1}{2}{{(\cos 2x + 1)}^2} + 9(1 - \cos 2x)} $
Now take square both side
${(16\cos 2x - 1)^2} = 4\{ \dfrac{1}{2}({\cos ^2}2x + 1 + 2\cos 2x) + 9 - 9\cos 2x\} $
Now open square and multiply 4 inside the curly braces
$256{\cos ^2}2x + 1 - 32\cos 2x = 2{\cos ^2}2x + 2 + 4\cos 2x + 36 - 36\cos 2x$
Now after rearranging we get
$254{\cos ^2}2x = 37$
We can write this as
$\cos 2x = \pm \sqrt {\dfrac{{37}}{{254}}} $
Now
$2x = {\cos ^{ - 1}}( \pm \sqrt {\dfrac{{37}}{{254}}} )$
$x = \dfrac{1}{2} \times {\cos ^{ - 1}}( \pm \sqrt {\dfrac{{37}}{{254}}} )$ And
Now as question said $x \in [0,2\pi ]$
In this interval $\cos x$ take two time negative value and two time positive value
When $x \in \left[ {0,\dfrac{\pi }{2}} \right]$ , $\cos x$ take positive value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{37}}{{254}}} } \right)$
When $x \in \left[ {\dfrac{\pi }{2},\pi } \right]$, $\cos x$ take negative value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( { - \sqrt {\dfrac{{37}}{{254}}} } \right)$
And also when $x \in \left[ {\pi ,\dfrac{{2\pi }}{3}} \right]$, $\cos x$ take positive value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{37}}{{254}}} } \right)$
And also when $x \in \left[ {\dfrac{{2\pi }}{3},2\pi } \right]$, $\cos x$ take negative value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( { - \sqrt {\dfrac{{37}}{{254}}} } \right)$
From this we can say total 4 solution we have in $x \in \left[ {0,2\pi } \right]$
So our answer is 4.
Option A is the correct answer.
Note: We have to remember that $\cos \theta $ taking positive value in first and fourth coordinate and negative value in second and third coordinate.
First Quadrant- All are positive Second Quadrant- Sin and Cosec are positive Third Quadrant- Tan and Cot are positive Fourth Quadrant- Cos and Sec are positive.
So we first solve modulus function so if $|x| = a$ then it become $x = \pm a$ and we use some trigonometric relation
$1.{\cos ^2}x - {\sin ^2}x = \cos 2x$
$2.{\sin ^2}x + {\cos ^2}x = 1$ and we rearrange the whole equation by squaring both sides and after that we use these formulas to find our answer.
Complete step-by-step answer:
Step 1. Solve modulus function first
$\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} - \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} = \pm 1$
Now doing rearrangements we get
$\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} = \pm 1 + \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now by taking square both side we get
${(\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} )^2} = {( \pm 1 + \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} )^2}$
Now ${(a \pm b)^2} = {a^2} + {b^2} \pm 2ab$
By using this we can write
$2{\sin ^4}x + 18{\cos ^2}x = 1 + 2{\cos ^4}x + 18{\sin ^2}x \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now rearranging this equation
$2{\sin ^4}x - 2{\cos ^4}x + 18{\cos ^2}x - 18{\sin ^2}x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now use some formula
${a^2} - {b^2} = (a - b)(a + b)$ and ${\cos ^2}x - {\sin ^2}x = \cos 2x$
From this we get
$2({\sin ^2}x - {\cos ^2}x)({\sin ^2}x + {\cos ^2}x) + 18({\cos ^2}x - {\sin ^2}x) = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
As we know ${\sin ^2}x + {\cos ^2}x = 1$
Now $ - 2\cos 2x + 18\cos 2x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
From this we can write
$16\cos 2x = 1 \pm 2\sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} $
Now we use $2{\cos ^2}x = 1 + \cos 2x$ and $2{\sin ^2}x = 1 - \cos 2x$
$16\cos 2x = 1 \pm 2\sqrt {\dfrac{1}{2}{{(\cos 2x + 1)}^2} + 9(1 - \cos 2x)} $
Now again we do rearrangements of terms
$16\cos 2x - 1 = \pm 2\sqrt {\dfrac{1}{2}{{(\cos 2x + 1)}^2} + 9(1 - \cos 2x)} $
Now take square both side
${(16\cos 2x - 1)^2} = 4\{ \dfrac{1}{2}({\cos ^2}2x + 1 + 2\cos 2x) + 9 - 9\cos 2x\} $
Now open square and multiply 4 inside the curly braces
$256{\cos ^2}2x + 1 - 32\cos 2x = 2{\cos ^2}2x + 2 + 4\cos 2x + 36 - 36\cos 2x$
Now after rearranging we get
$254{\cos ^2}2x = 37$
We can write this as
$\cos 2x = \pm \sqrt {\dfrac{{37}}{{254}}} $
Now
$2x = {\cos ^{ - 1}}( \pm \sqrt {\dfrac{{37}}{{254}}} )$
$x = \dfrac{1}{2} \times {\cos ^{ - 1}}( \pm \sqrt {\dfrac{{37}}{{254}}} )$ And
Now as question said $x \in [0,2\pi ]$
In this interval $\cos x$ take two time negative value and two time positive value
When $x \in \left[ {0,\dfrac{\pi }{2}} \right]$ , $\cos x$ take positive value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{37}}{{254}}} } \right)$
When $x \in \left[ {\dfrac{\pi }{2},\pi } \right]$, $\cos x$ take negative value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( { - \sqrt {\dfrac{{37}}{{254}}} } \right)$
And also when $x \in \left[ {\pi ,\dfrac{{2\pi }}{3}} \right]$, $\cos x$ take positive value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{37}}{{254}}} } \right)$
And also when $x \in \left[ {\dfrac{{2\pi }}{3},2\pi } \right]$, $\cos x$ take negative value so here $x = \dfrac{1}{2} \times {\cos ^{ - 1}}\left( { - \sqrt {\dfrac{{37}}{{254}}} } \right)$
From this we can say total 4 solution we have in $x \in \left[ {0,2\pi } \right]$
So our answer is 4.
Option A is the correct answer.
Note: We have to remember that $\cos \theta $ taking positive value in first and fourth coordinate and negative value in second and third coordinate.
First Quadrant- All are positive Second Quadrant- Sin and Cosec are positive Third Quadrant- Tan and Cot are positive Fourth Quadrant- Cos and Sec are positive.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Explain sex determination in humans with the help of class 12 biology CBSE
Explain with a neat labelled diagram the TS of mammalian class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE