A tower is $5\sqrt 3 $ meter high. Find the angle of elevation of its top from a point 5 meter away from its foot.

Answer
379.2k+ views
Hint- Here, we will be making diagram according to the problem statement and then we will use the formula for tangent trigonometric function i.e, $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$ in order to evaluate the value for the angle of elevation (i.e., $\theta $).
Complete step-by-step answer:
Given, height of the tower AB = $5\sqrt 3 $ meter
Let point C be a point which is 5 meter away from the foot of the tower AB (i.e., point B).
Let us suppose that the angle of elevation of the top of the tower (i.e., point A) from point C is $\theta $.
As we know that in any right angled triangle, $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}{\text{ }} \to {\text{(1)}}$
In the right angled triangle ABC (right angled at vertex B), side AB is the perpendicular, side BC is the base and side AC is the hypotenuse.
Using formula given by equation (1) for triangle ABC, we get
$
\tan \theta = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} = \dfrac{{5\sqrt 3 }}{5} \\
\Rightarrow \tan \theta = \sqrt 3 {\text{ }} \to {\text{(2)}} \\
$
Also we know that $\tan {60^0} = \sqrt 3 {\text{ }} \to {\text{(3)}}$
Clearly, the RHS of both the equations (2) and (3) is the same so the LHS of both these equations will also be equal.
i.e., $
\tan \theta = \tan {60^0} \\
\Rightarrow \theta = {60^0} \\
$
Therefore, the required angle of elevation of the top of the tower from a point 5 meter away from the foot of the tower is ${60^0}$.
Note- In any right angled triangle, the hypotenuse is the side opposite to ${90^0}$ (in this case the right angle is at B and the side opposite to vertex B is AC), the perpendicular is the side opposite to the considered angle $\theta $ (in this case the perpendicular is AB) and the base is the remaining side (in this case base is BC).
Complete step-by-step answer:
Given, height of the tower AB = $5\sqrt 3 $ meter
Let point C be a point which is 5 meter away from the foot of the tower AB (i.e., point B).
Let us suppose that the angle of elevation of the top of the tower (i.e., point A) from point C is $\theta $.
As we know that in any right angled triangle, $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}{\text{ }} \to {\text{(1)}}$
In the right angled triangle ABC (right angled at vertex B), side AB is the perpendicular, side BC is the base and side AC is the hypotenuse.
Using formula given by equation (1) for triangle ABC, we get
$
\tan \theta = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} = \dfrac{{5\sqrt 3 }}{5} \\
\Rightarrow \tan \theta = \sqrt 3 {\text{ }} \to {\text{(2)}} \\
$
Also we know that $\tan {60^0} = \sqrt 3 {\text{ }} \to {\text{(3)}}$
Clearly, the RHS of both the equations (2) and (3) is the same so the LHS of both these equations will also be equal.
i.e., $
\tan \theta = \tan {60^0} \\
\Rightarrow \theta = {60^0} \\
$
Therefore, the required angle of elevation of the top of the tower from a point 5 meter away from the foot of the tower is ${60^0}$.
Note- In any right angled triangle, the hypotenuse is the side opposite to ${90^0}$ (in this case the right angle is at B and the side opposite to vertex B is AC), the perpendicular is the side opposite to the considered angle $\theta $ (in this case the perpendicular is AB) and the base is the remaining side (in this case base is BC).
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How many meters are there in a kilometer And how many class 8 maths CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a labelled sketch of the human eye class 12 physics CBSE
