Answer
Verified
446.1k+ views
Hint: Here the given of the problem is the radius of a circle. As any tangent and the radius of a circle is perpendicular to each other. From the given information we will get a right-angle triangle. Then we will apply the Pythagoras theorem. From the theorem, we can find the length of \[PQ\].
Complete step-by-step answer:
It is given that; a tangent \[PQ\] at a point \[P\] of a circle of radius \[5\]cm meets a line through the centre \[O\] at a point \[Q\]so that \[OQ = 13\]cm.
We have to find the length of \[PQ\].
We know that the tangent of a circle is perpendicular with its radius at the point of tangent.
So, here the radius \[OP\] is perpendicular to the tangent \[PQ\]. So, \[\angle OPQ = {90^ \circ }\].
Therefore, \[\Delta OPQ\] is a right-angle triangle whose \[\angle OPQ = {90^ \circ }\]and \[OQ = 13\]cm
So, we can apply Pythagoras theorem.
We have,
\[O{Q^2} = O{P^2} + P{Q^2}\]
Substitute the values we get,
\[{13^2} = {5^2} + P{Q^2}\]
Simplifying we get,
\[P{Q^2} = 169 - 25\]
Simplifying again we get,
\[PQ = \sqrt {144} = 12\] (we will take the positive value)
Hence, the length of \[PQ\] is \[12\] cm.
Note: Square root of any value gives two roots: one is positive and another is negative.
Here, \[PQ\] gives another value that is \[ - 12\]. But the length of any object cannot be negative. So, we ignore negative values for the length of \[PQ\].
Tangent to a circle is a line that touches the circle at one point, which is known as point of tangent. At the point of tangent, the tangent of a circle is always perpendicular to the radius.
Complete step-by-step answer:
It is given that; a tangent \[PQ\] at a point \[P\] of a circle of radius \[5\]cm meets a line through the centre \[O\] at a point \[Q\]so that \[OQ = 13\]cm.
We have to find the length of \[PQ\].
We know that the tangent of a circle is perpendicular with its radius at the point of tangent.
So, here the radius \[OP\] is perpendicular to the tangent \[PQ\]. So, \[\angle OPQ = {90^ \circ }\].
Therefore, \[\Delta OPQ\] is a right-angle triangle whose \[\angle OPQ = {90^ \circ }\]and \[OQ = 13\]cm
So, we can apply Pythagoras theorem.
We have,
\[O{Q^2} = O{P^2} + P{Q^2}\]
Substitute the values we get,
\[{13^2} = {5^2} + P{Q^2}\]
Simplifying we get,
\[P{Q^2} = 169 - 25\]
Simplifying again we get,
\[PQ = \sqrt {144} = 12\] (we will take the positive value)
Hence, the length of \[PQ\] is \[12\] cm.
Note: Square root of any value gives two roots: one is positive and another is negative.
Here, \[PQ\] gives another value that is \[ - 12\]. But the length of any object cannot be negative. So, we ignore negative values for the length of \[PQ\].
Tangent to a circle is a line that touches the circle at one point, which is known as point of tangent. At the point of tangent, the tangent of a circle is always perpendicular to the radius.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE