
A sum of \[Rs.11000\] was taken as a loan. This is to be repaid in two equal instalments. If the rate of interest be \[20%\] compounded annually, then the value of each instalment is
A. \[Rs.8420\]
B. \[Rs.7920\]
C. \[Rs.7200\]
D. \[Rs.7000\]
Answer
606.9k+ views
Hint: Use the formula to calculate the compound interest (compounded annually) \[P=\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{T}}}+\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{2T}}}\] where \[x\] is the amount to be paid in each instalment, \[P\] is the principal money on which interest is added, \[R\] is the rate of interest and \[T\] is the time after which amount will be paid back.
Complete step-by-step answer:
We have a sum of \[Rs.11000\] which is to be repaid after adding a compound interest at a rate of \[20%\] compounded annually. As the interest is to be compounded annually, we have \[T=1\] year.
To calculate the amount to be paid in each instalment, we will use the formula \[P=\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{T}}}+\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{2T}}}\] where \[x\] is the amount to be paid after the interest is added, \[P\] is the principal money on which interest is added, \[R\] is the rate of interest and \[T\] is the time after which amount will be paid back.
We have \[P=Rs.11000,R=20%,T=1\] year. Substituting these values in the above formula, we have \[11000=\dfrac{x}{\left( 1+\dfrac{20}{100} \right)}+\dfrac{x}{{{\left( 1+\dfrac{20}{100} \right)}^{2}}}\].
Solving the above equation, we have \[11000=\dfrac{5x}{6}+\dfrac{25x}{36}\].
Further simplifying the equation, we have \[11000=\dfrac{55x}{36}\].
Thus, we have \[x=\dfrac{11000\times 36}{55}=7200\].
Hence, the amount of each instalment is \[Rs.7,200\], which is option (c).
Note: It’s necessary to keep in mind that the compound interest is compounded annually and the total amount is to be paid in two instalments. If we don’t consider the fact that the amount is to be paid in two instalments, we will get a wrong answer. Compound interest is the interest (extra money) that one needs to pay on a sum of money that has been taken as a loan.
Complete step-by-step answer:
We have a sum of \[Rs.11000\] which is to be repaid after adding a compound interest at a rate of \[20%\] compounded annually. As the interest is to be compounded annually, we have \[T=1\] year.
To calculate the amount to be paid in each instalment, we will use the formula \[P=\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{T}}}+\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{2T}}}\] where \[x\] is the amount to be paid after the interest is added, \[P\] is the principal money on which interest is added, \[R\] is the rate of interest and \[T\] is the time after which amount will be paid back.
We have \[P=Rs.11000,R=20%,T=1\] year. Substituting these values in the above formula, we have \[11000=\dfrac{x}{\left( 1+\dfrac{20}{100} \right)}+\dfrac{x}{{{\left( 1+\dfrac{20}{100} \right)}^{2}}}\].
Solving the above equation, we have \[11000=\dfrac{5x}{6}+\dfrac{25x}{36}\].
Further simplifying the equation, we have \[11000=\dfrac{55x}{36}\].
Thus, we have \[x=\dfrac{11000\times 36}{55}=7200\].
Hence, the amount of each instalment is \[Rs.7,200\], which is option (c).
Note: It’s necessary to keep in mind that the compound interest is compounded annually and the total amount is to be paid in two instalments. If we don’t consider the fact that the amount is to be paid in two instalments, we will get a wrong answer. Compound interest is the interest (extra money) that one needs to pay on a sum of money that has been taken as a loan.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

