Answer

Verified

475.2k+ views

Hint: Use the formula to calculate the compound interest (compounded annually) \[P=\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{T}}}+\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{2T}}}\] where \[x\] is the amount to be paid in each instalment, \[P\] is the principal money on which interest is added, \[R\] is the rate of interest and \[T\] is the time after which amount will be paid back.

Complete step-by-step answer:

We have a sum of \[Rs.11000\] which is to be repaid after adding a compound interest at a rate of \[20%\] compounded annually. As the interest is to be compounded annually, we have \[T=1\] year.

To calculate the amount to be paid in each instalment, we will use the formula \[P=\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{T}}}+\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{2T}}}\] where \[x\] is the amount to be paid after the interest is added, \[P\] is the principal money on which interest is added, \[R\] is the rate of interest and \[T\] is the time after which amount will be paid back.

We have \[P=Rs.11000,R=20%,T=1\] year. Substituting these values in the above formula, we have \[11000=\dfrac{x}{\left( 1+\dfrac{20}{100} \right)}+\dfrac{x}{{{\left( 1+\dfrac{20}{100} \right)}^{2}}}\].

Solving the above equation, we have \[11000=\dfrac{5x}{6}+\dfrac{25x}{36}\].

Further simplifying the equation, we have \[11000=\dfrac{55x}{36}\].

Thus, we have \[x=\dfrac{11000\times 36}{55}=7200\].

Hence, the amount of each instalment is \[Rs.7,200\], which is option (c).

Note: It’s necessary to keep in mind that the compound interest is compounded annually and the total amount is to be paid in two instalments. If we don’t consider the fact that the amount is to be paid in two instalments, we will get a wrong answer. Compound interest is the interest (extra money) that one needs to pay on a sum of money that has been taken as a loan.

Complete step-by-step answer:

We have a sum of \[Rs.11000\] which is to be repaid after adding a compound interest at a rate of \[20%\] compounded annually. As the interest is to be compounded annually, we have \[T=1\] year.

To calculate the amount to be paid in each instalment, we will use the formula \[P=\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{T}}}+\dfrac{x}{{{\left( 1+\dfrac{R}{100} \right)}^{2T}}}\] where \[x\] is the amount to be paid after the interest is added, \[P\] is the principal money on which interest is added, \[R\] is the rate of interest and \[T\] is the time after which amount will be paid back.

We have \[P=Rs.11000,R=20%,T=1\] year. Substituting these values in the above formula, we have \[11000=\dfrac{x}{\left( 1+\dfrac{20}{100} \right)}+\dfrac{x}{{{\left( 1+\dfrac{20}{100} \right)}^{2}}}\].

Solving the above equation, we have \[11000=\dfrac{5x}{6}+\dfrac{25x}{36}\].

Further simplifying the equation, we have \[11000=\dfrac{55x}{36}\].

Thus, we have \[x=\dfrac{11000\times 36}{55}=7200\].

Hence, the amount of each instalment is \[Rs.7,200\], which is option (c).

Note: It’s necessary to keep in mind that the compound interest is compounded annually and the total amount is to be paid in two instalments. If we don’t consider the fact that the amount is to be paid in two instalments, we will get a wrong answer. Compound interest is the interest (extra money) that one needs to pay on a sum of money that has been taken as a loan.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE